READ THIS $\Longrightarrow:$ Please begin each question ($\mathbf{I}-\mathbf{V}$) on a new sheet of paper.

In ANSWERING ANY PART OF A QUESTION, YOU MAY ASSUME THE RESULTS IN PREVIOUS PARTS, EVEN IF YOU HAVEN'T DONE THEM.
[Bold numbers] INDICATE POINTS (60 TOTAL).
I. This problem indicates that to classify groups G of order $p q r$, where $p>q>r$ are prime, one can start by showing that G is isomorphic to a semidirect product $P \rtimes_{\theta} K$ where P has order p and K has order $q r$.

By counting elements of order p or q, one sees that in such a G, either there is a normal Sylow p-subgroup or there is a normal Sylow q-subgroup. (You may assume this.) Prove:
(a) [5] G has a subgroup H of order $p q$; and H is normal in G.
(b) [4] Every subgroup of G of order p or q is contained in H.
(c) [5] G has exactly one subgroup P of order p.
(d) $[\mathbf{6}] G$ has a subgroup K of order $q r$.

Hint. When G has more than one subgroup of order q, consider the normalizer of any one of them.
II. Let R be a ring such that $x^{2}=x$ for all $x \in R$. (Such rings are called Boolean.) Prove:
(a) [1] In $R, 2=0$.
(b) [2] R is commutative. (Hint: expand $(x+y)(x+y)$.)
(c) [3] For an ideal $p \neq R$, the following conditions are equivalent:
(i) p is prime.
(ii) For every $x \in R$, either $x \in p$ or $1-x \in p$.
(iii) $R / p \cong \mathbb{F}_{2}$, the field with two elements.
(d) [4] Let S be the set of prime ideals in R. Then R is isomorphic to a subring of the ring of all maps of sets $S \rightarrow \mathbb{F}_{2}$-where the sum and product of two maps f, g are given by

$$
(f+g)(p)=f(p)+g(p), \quad(f g)(p)=f(p) g(p)
$$

Hint: For $x \in R$, consider the map x^{*} given by $x^{*}(p)=(x+p) \in R / p$.
III. Let ω be the complex number $(1+i \sqrt{11}) / 2$.
(a) [2] Show that $\mathbb{Z}[\omega]$ is norm-euclidean.
(b) [2] Prove that 2 is prime in $\mathbb{Z}[\omega]$, but not in $\mathbb{Z}[2 \omega]$.
(c) [3] Let $p \neq 11$ be an odd positive prime in \mathbb{Z}, let ζ be a primitive 11-th root of unity in some extension of the finite field $\mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z}$.

It is known (and you may assume) that the "Gauss sum" $\xi:=\sum_{i=1}^{5} \zeta^{i^{2}}=\zeta+\zeta^{4}+\zeta^{9}+\zeta^{5}+\zeta^{3}$ satisfies $(2 \xi+1)^{2}=-11$. Show that

$$
-11 \text { is a square in } \mathbb{F}_{p} \Longleftrightarrow \xi^{p}=\xi \Longleftrightarrow p \text { is a square in } \mathbb{F}_{11} .
$$

(d) [3] Show: $p($ as in $(\mathrm{c}))=x^{2}+x y+3 y^{2}$ for some $x, y \in \mathbb{Z} \Longleftrightarrow p \equiv 1,3,4,5$, or $9(\bmod 11)$.
IV. (a) [2] Let G be a cyclic group of order g, and let $n>0$ be a divisor of g. Prove that the set

$$
\left\{x \in G \mid x^{n}=e\right\} \quad(e=\text { identity })
$$

is the unique subgroup of order n in G.
(b) [4] Let $F=\mathbb{F}_{q}$ be a finite field of cardinality $|F|=q$, and let n be a positive integer relatively prime to q. Prove that a field $K \supset F$ contains a splitting field L (over F) of the polynomial $X^{n}-1$ if and only if n divides $|K|-1$; and deduce that the degree $[L: F]$ is the order of q in the multiplicative group of units of $\mathbb{Z} /(n)$.
(c) [4] Factor the polynomial $X^{12}-1 \in \mathbb{F}_{5}[X]$ into irreducibles.
V. Let k be a commutative field, and let $k(X)$ be the field of fractions of the polynomial ring $k[X]$. Let f and g be the unique automorphisms of $k(X)$ fixing k and such that

$$
f(X)=1 / X, \quad g(X)=1-X
$$

In the group of all automorphisms of $k(X)$, let G be the subgroup generated by f and g.
(a) [3] Write down explicitly all the members of G. (f and g are already given above; specify the other members similarly.)
(b) [3] Show that the fixed field of G is $k(Y)$, where

$$
Y=\left(X^{2}-X+1\right)^{3} /\left(X^{2}-X\right)^{2}
$$

(c) [4] Show: If $k(Y) \varsubsetneqq L \varsubsetneqq k(X)$ with $L / k(Y)$ a normal field extension, then $L=k(Z)$ where

$$
Z=X+\left(1-\frac{1}{X}\right)+\frac{1}{1-X}
$$

