MATH 553 QUALIFYING EXAMINATION, JANUARY 2013

READ THIS \implies : Please begin each question (I–V) on a new sheet of paper.

IN ANSWERING ANY PART OF A QUESTION, YOU MAY ASSUME THE RESULTS IN PREVIOUS PARTS, EVEN IF YOU HAVEN'T DONE THEM.

[Bold numbers] INDICATE POINTS (60 TOTAL).

I. This problem indicates that to classify groups G of order pqr, where p > q > r are prime, one can start by showing that G is isomorphic to a semidirect product $P \rtimes_{\theta} K$ where P has order p and K has order qr.

By counting elements of order p or q, one sees that in such a G, either there is a normal Sylow p-subgroup or there is a normal Sylow q-subgroup. (You may assume this.) <u>Prove</u>:

- (a) [5] G has a subgroup H of order pq; and H is normal in G.
- (b) [4] Every subgroup of G of order p or q is contained in H.
- (c) [5] G has exactly one subgroup P of order p.
- (d) [6] G has a subgroup K of order qr.

<u>Hint</u>. When G has more than one subgroup of order q, consider the normalizer of any one of them.

II. Let R be a ring such that $x^2 = x$ for all $x \in R$. (Such rings are called *Boolean*.) <u>Prove</u>:

- (a) [1] In R, 2=0.
- (b) [2] R is commutative. (<u>Hint</u>: expand (x+y)(x+y).)
- (c) [3] For an ideal p ≠ R, the following conditions are equivalent:
 (i) p is prime.
 - (ii) For every $x \in R$, either $x \in p$ or $1 x \in p$.
 - (iii) $R/p \cong \mathbb{F}_2$, the field with two elements.

(d) [4] Let S be the set of prime ideals in R. Then R is isomorphic to a subring of the ring of all maps of sets $S \to \mathbb{F}_2$ —where the sum and product of two maps f, g are given by

$$(f+g)(p) = f(p) + g(p),$$
 $(fg)(p) = f(p)g(p).$

<u>Hint</u>: For $x \in R$, consider the map x^* given by $x^*(p) = (x+p) \in R/p$.

III. Let ω be the complex number $(1 + i\sqrt{11})/2$.

- (a) [2] Show that $\mathbb{Z}[\omega]$ is norm-euclidean.
- (b) [2] Prove that 2 is prime in $\mathbb{Z}[\omega]$, but not in $\mathbb{Z}[2\omega]$.

(c) [3] Let $p \neq 11$ be an odd positive prime in \mathbb{Z} , let ζ be a primitive 11-th root of unity in some extension of the finite field $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$.

It is known (and you may assume) that the "Gauss sum" $\xi := \sum_{i=1}^{5} \zeta^{i^2} = \zeta + \zeta^4 + \zeta^9 + \zeta^5 + \zeta^3$ satisfies $(2\xi + 1)^2 = -11$. Show that

-11 is a square in $\mathbb{F}_p \iff \xi^p = \xi \iff p$ is a square in \mathbb{F}_{11} .

(d) [3] Show: p (as in (c)) = $x^2 + xy + 3y^2$ for some $x, y \in \mathbb{Z} \iff p \equiv 1, 3, 4, 5, \text{ or } 9 \pmod{11}$.

IV. (a) [2] Let G be a cyclic group of order g, and let n > 0 be a divisor of g. Prove that the set

$$\{x \in G \mid x^n = e\}$$
 (e = identity)

is the unique subgroup of order n in G.

(b) [4] Let $F = \mathbb{F}_q$ be a finite field of cardinality |F| = q, and let n be a positive integer relatively prime to q. Prove that a field $K \supset F$ contains a splitting field L (over F) of the polynomial $X^n - 1$ if and only if n divides |K| - 1; and deduce that the degree [L:F] is the order of q in the multiplicative group of units of $\mathbb{Z}/(n)$.

(c) [4] Factor the polynomial $X^{12} - 1 \in \mathbb{F}_5[X]$ into irreducibles.

V. Let k be a commutative field, and let k(X) be the field of fractions of the polynomial ring k[X]. Let f and g be the unique automorphisms of k(X) fixing k and such that

$$f(X) = 1/X,$$
 $g(X) = 1 - X.$

In the group of all automorphisms of k(X), let G be the subgroup generated by f and g.

(a) [3] Write down explicitly all the members of G. (f and g are already given above; specify the other members similarly.)

(b) [3] Show that the fixed field of G is k(Y), where

$$Y = (X^2 - X + 1)^3 / (X^2 - X)^2$$

(c) [4] Show: If $k(Y) \subsetneqq L \gneqq k(X)$ with L/k(Y) a normal field extension, then L = k(Z) where

$$Z = X + \left(1 - \frac{1}{X}\right) + \frac{1}{1 - X}$$