ABSTRACT ALGEBRA COMPREHENSIVE EXAM - AUG, 2013

Attempt all questions. Time 2 hrs
(1) (20 pts) Let G be a group such that for a fixed integer $n>1,(x y)^{n}=x^{n} y^{n}$ for all $x, y \in G$. Let $G^{(n)}=\left\{x^{n} \mid x \in G\right\}$ and $G_{(n)}=\left\{x \in G \mid x^{n}=e\right\}$.
(a) Prove that $G^{(n)}$ and $G_{(n)}$ are normal subgroups of G.
(b) If G is finite, show that the order of $G^{(n)}$ is equal to the index of $G_{(n)}$.
(c) Show that for all $x, y \in G$, we have $x^{1-n} y^{1-n}=(x y)^{1-n}$. Use this to deduce that $x^{n-1} y^{n}=y^{n} x^{n-1}$.
(d) Conclude from the above that the set of elements of G of the form $x^{n(n-1)}$ generates a commutative subgroup of G.
(2) (20 pts) Let G be a finite group and p a prime number. An element $g \in G$ is called p-unipotent if its order is a power of p, and p-regular if its order is not divisible by p.
(a) Let $x \in G$. Show that there exists a unique ordered pair (u, r) of elements of G such that u is p-unipotent, r is p-regular, and $x=u r=$ ru.
(b) Let P be a p-Sylow subgroup of G, C the centralizer of P, and E the set of p-regular elements of G. Show that

$$
|E| \equiv|E \cap C| \quad \bmod p
$$

(c) Deduce that p does not divide the order of E.
(3) (10pts) G be a finite group, and $\varphi: G \longrightarrow G$ a homomorphism.
(a) Prove that there exists a positive integer n such that for all integers $m \geq n$, we have $\operatorname{Im} \varphi^{m}=\operatorname{Im} \varphi^{n}$ and $\operatorname{Ker} \varphi^{m}=\operatorname{Ker} \varphi^{n}$.
(b) For n as above, prove that G is the semidirect product of the subgroups $\operatorname{Ker} \varphi^{n}$ and $\operatorname{Im} \varphi^{n}$.
(4) (20 pts) In which of the following rings is every ideal principal? Justify your answer.
(i) $\mathbb{Z} \oplus \mathbb{Z}$,
(ii) $\frac{\mathbb{Z}}{(4)}$,
(iii) $\frac{\mathbb{Z}}{(6)}[x]$,
(iv) $\frac{\mathbb{Z}}{(4)}[x]$.
(5) (20 pts) Let k be a field of characteristic $\neq 2,3$. Prove that the following statements are equivalent:
(a) Any sum of squares in k is itself a square.
(b) Whenever a cubic polynomial f factors completely in k, so does its derivative f^{\prime}.
(6) (10 pts)
(a) Let k be a field and α algebraic over k and such that $[k(\alpha): k]$ is odd. Prove that $k\left(\alpha^{2}\right)=k(\alpha)$.
(b) Calculate $[E: \mathbb{Q}]$ where $E=\mathbb{Q}(\sqrt{2}, \sqrt{5}, \sqrt{7})$?
(c) Is $2^{1 / 3}$ (the real cube root of 2) contained in E ? Justify.

