MATH 553 QUALIFYING EXAMINATION January 6, 2012

PLEASE BEGIN YOUR ANSWER TO EACH PROBLEM I-IV ON A NEW SHEET.

WHEN ANSWERING ANY PART OF A PROBLEM, YOU MAY USE PRECEDING PARTS, EVEN IF YOU HAVEN'T SOLVED THEM.

I. [15 points] Let G be a finite group, let p be a prime divisor of the order |G|, and let P be a Sylow p-subgroup of G. Let N(P) be the normalizer of P, and $C(P) \subset N(P)$ the centralizer of P (consisting of those elements of G which commute with every element of P).

- (a) Show that the index [N(P): C(P)] is the order of a subgroup of the automorphism group of P.
- (b) Show that p divides [N(P) : C(P)] if, and only if, P is nonabelian.
- (c) Show that if P is cyclic and the gcd (|G|, p-1) = 1 then C(P) = N(P).
- **II.** [15 points] (a) Let R be an integral domain. Suppose there exists a function $\nu: (R \setminus \{0\}) \to \mathbb{N}$ such that (*): for all $b \neq 0$ in R and $a \notin bR$, there exist x and y in R such that $ax + by \neq 0$ and $\nu(ax + by) < \nu(b)$. Prove that R is a principal ideal domain.

(b). Let R be any principal ideal domain. Define $\nu: (R \setminus \{0\}) \to \mathbb{N}$ by $\nu(a) := 0$ if a is a unit, and otherwise $\nu(a) :=$ the total number of factors in any factorization of a into irreducible elements.

- (i) Explain why this ν is well-defined.
- (ii) Show that ν satisfies the condition (*) in (a).

III. [10 points] Let F be a finite field of odd cardinality q, and let $L \supset F$ be an extension such that [L:F] = 2.

(a) Show that the roots in L of $X^8 - 1$ form a cyclic group G of order 8.

<u>Hint</u>. Consider the order of the multiplicative group L^* .

- (b) Let ζ be a generator of G. Show that $(\zeta + \zeta^{-1})^2 = 2$.
- (c) Show that $\zeta + \zeta^{-1} \in F \iff (\zeta + \zeta^{-1})^q = \zeta + \zeta^{-1} \iff q \equiv \pm 1 \pmod{8}.$

IV. [20 points] (a) Prove: the galois group \mathcal{G} of $f(X) := (X^3 - 2)(X^3 - 3) \in \mathbb{Q}[X]$ is isomorphic to the semidirect product $\mathbb{Z}_2 \rtimes_{\theta} (\mathbb{Z}_3 \times \mathbb{Z}_3)$, where θ takes the generator of \mathbb{Z}_2 to the automorphism $h \mapsto h^{-1}$ of $\mathbb{Z}_3 \times \mathbb{Z}_3$.

(b) Set $\rho := e^{2\pi i/3}$, so that $L := \mathbb{Q}[\rho, \sqrt[3]{2}, \sqrt[3]{3}]$ is a splitting field of f(X). ($\sqrt[3]{}$ means *real* cube root.) Describe explicitly all the subfields of L that contain ρ . (One such field, for example, is $\mathbb{Q}[\rho, \sqrt[3]{12}]$.)

Suggestions (fill in-and justify-the details!):

For (a), let $E := \mathbb{Q}[\rho] \subset \mathbb{Q}[\rho, \sqrt[3]{2}] =: F$. Show that $X^3 - 2$ is irreducible in E[X]. If $X^3 - 3$ were reducible in F[X] then for some $d \in F$, say $d = a + b\sqrt[3]{2} + c\sqrt[3]{4}$ $(a, b, c \in E)$, we'd have $d^3 = 3$, and so if ψ is the *E*-automorphism of *F* such that $\psi\sqrt[3]{2} = \rho\sqrt[3]{2}$ then $\psi(d) = \rho^n d$ for some n = 1 or 2; deduce from this that *a* and one of *b*, *c* vanish, then take the (E/\mathbb{Q}) -norm of d^3 to get a contradiction. Conclude that [L:E] = 9, and determine the galois group *H* of L/E.

Note also that complex conjugation is an automorphism of L, generating an order 2 subgroup $G \subset \mathcal{G}$. For (b), think about the subgroups of H.