MATH 553 QUALIFYING EXAMINATION January 6, 2012

PLEASE BEGIN YOUR ANSWER TO EACH PROBLEM I—IV ON A NEW SHEET.

WHEN ANSWERING ANY PART OF A PROBLEM, YOU MAY USE PRECEDING PARTS, EVEN IF YOU HAVEN'T SOLVED THEM.
I. [15 points] Let G be a finite group, let p be a prime divisor of the order $|G|$, and let P be a Sylow p-subgroup of G. Let $N(P)$ be the normalizer of P, and $C(P) \subset N(P)$ the centralizer of P (consisting of those elements of G which commute with every element of P).
(a) Show that the index $[N(P): C(P)]$ is the order of a subgroup of the automorphism group of P.
(b) Show that p divides $[N(P): C(P)]$ if, and only if, P is nonabelian.
(c) Show that if P is cyclic and the gcd $(|G|, p-1)=1$ then $C(P)=N(P)$.
II. [15 points] (a) Let R be an integral domain. Suppose there exists a function $\nu:(R \backslash\{0\}) \rightarrow \mathbb{N}$ such that $(*)$: for all $b \neq 0$ in R and $a \notin b R$, there exist x and y in R such that $a x+b y \neq 0$ and $\nu(a x+b y)<\nu(b)$. Prove that R is a principal ideal domain.
(b). Let R be any principal ideal domain. Define $\nu:(R \backslash\{0\}) \rightarrow \mathbb{N}$ by $\nu(a):=0$ if a is a unit, and otherwise $\nu(a):=$ the total number of factors in any factorization of a into irreducible elements.
(i) Explain why this ν is well-defined.
(ii) Show that ν satisfies the condition (*) in (a).
III. [10 points] Let F be a finite field of odd cardinality q, and let $L \supset F$ be an extension such that $[L: F]=2$.
(a) Show that the roots in L of $X^{8}-1$ form a cyclic group G of order 8 .

Hint. Consider the order of the multiplicative group L^{*}.
(b) Let ζ be a generator of G. Show that $\left(\zeta+\zeta^{-1}\right)^{2}=2$.
(c) Show that $\zeta+\zeta^{-1} \in F \Longleftrightarrow\left(\zeta+\zeta^{-1}\right)^{q}=\zeta+\zeta^{-1} \Longleftrightarrow q \equiv \pm 1(\bmod 8)$.
IV. [20 points] (a) Prove: the galois group \mathcal{G} of $f(X):=\left(X^{3}-2\right)\left(X^{3}-3\right) \in \mathbb{Q}[X]$ is isomorphic to the semidirect product $\mathbb{Z}_{2} \rtimes_{\theta}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)$, where θ takes the generator of \mathbb{Z}_{2} to the automorphism $h \mapsto h^{-1}$ of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
(b) Set $\rho:=e^{2 \pi i / 3}$, so that $L:=\mathbb{Q}[\rho, \sqrt[3]{2}, \sqrt[3]{3}]$ is a splitting field of $f(X)$. ($\sqrt[3]{ }$ means real cube root.) Describe explicitly all the subfields of L that contain ρ. (One such field, for example, is $\mathbb{Q}[\rho, \sqrt[3]{12}]$.)

Suggestions (fill in-and justify-the details!):
For (a), let $E:=\mathbb{Q}[\rho] \subset \mathbb{Q}[\rho, \sqrt[3]{2}]=: F$. Show that $X^{3}-2$ is irreducible in $E[X]$. If $X^{3}-3$ were reducible in $F[X]$ then for some $d \in F$, say $d=a+b \sqrt[3]{2}+c \sqrt[3]{4} \quad(a, b, c \in E)$, we'd have $d^{3}=3$, and so if ψ is the E-automorphism of F such that $\psi \sqrt[3]{2}=\rho \sqrt[3]{2}$ then $\psi(d)=\rho^{n} d$ for some $n=1$ or 2; deduce from this that a and one of b, c vanish, then take the (E / \mathbb{Q})-norm of d^{3} to get a contradiction. Conclude that $[L: E]=9$, and determine the galois group H of L / E.

Note also that complex conjugation is an automorphism of L, generating an order 2 subgroup $G \subset \mathcal{G}$.
For (b), think about the subgroups of H.

