MATH 553 Qualifying Exam

Note. There are 6 questions in 14 parts. Each part worths 9 points, except Problem **6** worths 18 points. But the maxmal points you may receive is 100 points. You may do them in any order but label your solutions clearly. You may do any problem/part by assuming the conclusion of other problems/parts.

1. Let A_7 be the alternating group of order $7!/2 = 504 \times 5$. Show that A_7 has no subgroup of order 504. You can freely use the fact that A_7 is simple.

2. Let $q = p^f > 1$ be an integral power of a prime number p. Denote by \mathbb{F}_q a finite field of cardinality q. Let $G = \operatorname{GL}_2(\mathbb{F}_q)$ be the group of 2×2 invertible matrices with coefficients in \mathbb{F}_q . You can take for granted that the cardinality of G is $(q^2 - 1)(q^2 - q)$.

- (a) Let $H = \{g \in G : \det(g) = 1\}$. Show that H is a subgroup of order $(q^2 1)q$.
- (b) Show that *H* contains a subgroup isomorphic to \mathbb{F}_q^{\times} , the multiplicative group of units in \mathbb{F}_q .
- (c) Show that G contains a subgroup isomorphic to $\mathbb{F}_{a^2}^{\times}$.
- (d) Let ℓ be a prime such that $\ell \neq 2, \ell \neq p$. Show that the Sylow ℓ -subgroup of H is cyclic.
- (e) Show that the Sylow *p*-subgroup of *H* is cyclic exactly when f = 1.
- (f) Assume that p is odd. Show that the Sylow 2-subgroup of H is not cyclic.

3. Let R and S be commutative rings with 1. Let I and J be ideals of R and S respectively.

- (a) Show that $I \times J$ is an ideal of $R \times S$.
- (b) Show that every ideal of $R \times S$ is of the form $I \times J$ for some I, J as above.
- (c) Show that $I \times J$ is a prime ideal if and only if I is a prime ideal and J = S, or I = R and J is a prime ideal.

4. Let k be a field and let $E = k(t) := \operatorname{Frac} k[t]$ be the field of fractions in an indeterminate t. Let $\sigma \in \operatorname{Aut}(E/k)$ be the automorphism characterized by $\sigma(t) = t + 1$.

- (a) Show that if the characteristic of k is zero, then $E^{\sigma} = k$.
- (b) Show that if the characteristic of k is p > 0, then $E^{\sigma} = k(t^{p} t)$.

5. Show that the polynomial $f(X) = X^4 + aX^3 + bX^2 + aX + 1$ is irreducible over $\mathbb{C}[a, b]$, where a, b are indeterminates over \mathbb{C} .

6. Let *F* be a field of characteristic 0 and let $a \in F^{\times}$. Exhibit all possible Galois groups of $f(X) = X^4 - a$ over *F* (up to conjugacy of subgroups of S_4). Exhibit one pair of (F, a) for each possibility and show that there is no other possibility.