MATH 553 QUALIFYING EXAMINATION January 2010

Please begin each question I-V on a new sheet.
In doing any part of a multipart problem, you may assume you've done the preceding PARTS, EVEN IF YOU HAVEN'T.
I. [32 points] Let p and q be (positive) integer primes such that p divides $q-1$.
(a) Show that there exists a group G of order $p^{2} q$ with generators x and y such that $x^{p^{2}}=1, y^{q}=1$, and $x y x^{-1}=y^{a}$, with 1 the identity element and a some integer such that $a \not \equiv 1(\bmod q)$ but $a^{p} \equiv 1(\bmod q)$.
(b) Prove that the Sylow q-subgroup $S_{q} \subset G$ is normal.
(c) Prove that G / S_{q} is cyclic; and deduce that G has a unique subgroup H of order $p q$.
(d) Prove that H is cyclic.
(e) Prove that any order- p subgroup of G is contained in H, hence is generated by x^{p} and is contained in the center of G.
(f) Prove that the center of G is the unique order- p subgroup of G.
(g) Prove that every subgroup of G other than G itself is cyclic.
(h) For each divisor d of $p^{2} q$, say how many elements of order d there are in G.
II. $[33$ points $]$ (a) Prove that the ring $R=\mathbb{Z}[\sqrt{-2}]$ is Euclidean.
(b) Show that $R /(3+2 \sqrt{-2}) \cong \mathbb{F}_{17}$, the field with 17 elements.
(c) Show that the polynomial $X^{4}+3$ is irreducible over the field \mathbb{F}_{17}, and deduce that the polynomial $f(X):=X^{4}-170 X^{3}+9+4 \sqrt{-2} \in R[X]$ is irreducible.
(d) Is the polynomial $Y^{4}-f(X) \in R[X, Y]$ irreducible? (Why?)
III. [8] Prove or disprove: If $E \subseteq F \subseteq G$ are fields such that F is a finite Galois extension of E and G is a finite Galois extension of F, then G is a finite Galois extension of E.
IV. [12] Let E be a field and let F be a finite Galois extension of E. Let $h(X)$ be an irreducible monic polynomial in $E[X]$, and let $h_{1}(X), h_{2}(X)$ be two irreducible monic polynomials in $F[X]$ both of which divide $h(X)$. Then (prove): there exists an automorphism θ of $F[X]$ such that θ leaves all elements in $E[X]$ fixed and furthermore $\theta\left(h_{1}\right)=h_{2}$.
V. [15] Let k be a commutative field, and let $k(X)$ be the field of fractions of the polynomial ring $k[X]$. Let f and g be the unique automorphisms of $k(X)$ fixing k and such that

$$
f(X)=1 / X, \quad g(X)=1-X
$$

In the group of all automorphisms of $k(X)$, let G be the subgroup generated by f and g.
(a) Write down explicitly all the members of G. (f and g are already given above; specify the other members similarly.)
(b) Show that the fixed field of G is $k(Y)$, where

$$
Y=\left(X^{2}-X+1\right)^{3} / X^{2}(X-1)^{2}
$$

Hint. X is a root of the sixth-degree polynomial $\left(T^{2}-T+1\right)^{3}-Y\left(T^{2}\right)(T-1)^{2} \in k(Y)[T]$.
(c) Show: If $k(Y) \varsubsetneqq L \varsubsetneqq k(X)$ with $L / k(Y)$ a normal field extension, then $L=k(Z)$ where

$$
Z=X+\left(1-\frac{1}{X}\right)+\frac{1}{1-X}
$$

