Qualifying Examination
MA 553
Time: 2 hours
August 13, 2010
Instructor: F. Shahidi
PUID:

1	
2	
3	
4	
5	
6	
7	
8	
Total	

PUID
(20 pts) 1. Show that every group of order 143 is cyclic. You are only allowed to use main theorems!

PUID

PUID
2. Let p a prime.
$(10 \mathrm{pts})$ a) Show that every group of order p^{2} is abelian.
$(10 \mathrm{pts}) \mathrm{b})$ Show that every non-abelian group of order p^{3} has a center of order p.
$(5 \mathrm{pts}) \quad$ c) Using parts a) and b) show that every group of order p^{3} is solvable. You CANNOT refer to any theorems except the definition of a solvable group by means of normal series.

PUID

PUID
3.
(10 pts) a) Let R be a UFD (unique factorization domain) and consider

$$
f(x, y)=x^{5}+y x^{3}+y x^{2}+y x+y \in R[x, y] .
$$

Show that $f(x, y)$ is irreducible in $R[x, y]$.
$(10 \mathrm{pts}) \quad$ b) Let $K=F\left(x^{5} / x^{3}+x^{2}+x+1\right)$, where F is a field. Determine $[F(x): K]$.

PUID

PUID
4.
(5 pts) a) Give the definition of a euclidean domain.
$(25 \mathrm{pts}) \mathrm{b})$ Let A be the subring of all the complex numbers $a+b \sqrt{-7}$ in which a and b are both integers or both halves of integers. Prove that A is a euclidean domain. Is A a principal ideal domain (PID)? Prove this. Quoting a theorem is not acceptable.

PUID

PUID
(15 pts) 5. Let F be a field of characteristic $p>0$. Fix an element c in F. Prove that $f(x)=x^{p}-c$ is irreducible in $F[x]$ if and only if $f(x)$ has no roots in F.

PUID

PUID
6)
$(10 \mathrm{pts})$ a) Determine the Galois closure F of $\mathbb{Q}(\sqrt[3]{1-\sqrt{7}})$. What are possible values of $[F: \mathbb{Q}]$?
$(15 \mathrm{pts}) \quad$ b) Show that F / \mathbb{Q} is an extension by radicals.
$(5 \mathrm{pts}) \quad \mathrm{c})$ Use part b) to conclude that $\operatorname{Gal}(F / \mathbb{Q})$ is solvable.

PUID

PUID
7. Let q be a prime and let

$$
f_{q}(x)=x^{q-1}+x^{q-2}+\ldots+1
$$

(15 pts) a) Suppose a prime number p divides $f_{q}(a)$ for some integer a. Prove that either $p=q$ or $p \equiv 1(\bmod q)$.
$(15 \mathrm{pts}) \mathrm{b})$ Prove there are infinitely many primes of the form $q b+1, b$ an integer.

PUID

PUID
8.
$(15 \mathrm{pts}) \quad$ a) Show that $\sqrt{3} \notin \mathbb{Q}(\sqrt[3]{2}, \omega)$, where $\omega^{2}+\omega+1=0$.
(15 pts) b) Determine the Galois group of

$$
f(x)=x^{5}-3 x^{3}-2 x^{2}+6 .
$$

$\left(\right.$ You may assume $\left.\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \omega) / \mathbb{Q}) \simeq S_{3}.\right)$

PUID

