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(20 pts) 1. Show that every group of order 143 is cyclic. You are only allowed to use main
theorems!
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2. Let p a prime.

(10 pts) a) Show that every group of order p2 is abelian.

(10 pts) b) Show that every non–abelian group of order p3 has a center of order p.

(5 pts) c) Using parts a) and b) show that every group of order p3 is solvable. You CANNOT
refer to any theorems except the definition of a solvable group by means of normal
series.
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3.

(10 pts) a) Let R be a UFD (unique factorization domain) and consider

f(x, y) = x5 + yx3 + yx2 + yx + y ∈ R[x, y].

Show that f(x, y) is irreducible in R[x, y].

(10 pts) b) Let K = F (x5/x3 + x2 + x + 1), where F is a field. Determine [F (x): K].
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4.

(5 pts) a) Give the definition of a euclidean domain.

(25 pts) b) Let A be the subring of all the complex numbers a + b
√−7 in which a and b are

both integers or both halves of integers. Prove that A is a euclidean domain. Is A
a principal ideal domain (PID)? Prove this. Quoting a theorem is not acceptable.
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(15 pts) 5. Let F be a field of characteristic p > 0. Fix an element c in F . Prove that f(x) = xp−c
is irreducible in F [x] if and only if f(x) has no roots in F .
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6)

(10 pts) a) Determine the Galois closure F of Q( 3
√

1 −√
7). What are possible values of

[F : Q]?

(15 pts) b) Show that F/Q is an extension by radicals.

(5 pts) c) Use part b) to conclude that Gal(F/Q) is solvable.
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7. Let q be a prime and let

fq(x) = xq−1 + xq−2 + . . . + 1.

(15 pts) a) Suppose a prime number p divides fq(a) for some integer a. Prove that either
p = q or p ≡ 1(mod q).

(15 pts) b) Prove there are infinitely many primes of the form qb + 1, b an integer.
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8.

(15 pts) a) Show that
√

3 6∈ Q( 3
√

2, ω), where ω2 + ω + 1 = 0.

(15 pts) b) Determine the Galois group of

f(x) = x5 − 3x3 − 2x2 + 6.

(You may assume Gal(Q( 3
√

2, ω)/Q) ' S3.)
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