- **1.** (20 pts) Let G be a nontrivial finite group.
 - (a) What is meant by a composition series for G?

(b) State the Jordan-Hölder theorem.

(c) What does it mean for G to be simple?

(d) What does it mean for G to be solvable?

(e) Give an example of a simple group that is not solvable.

2. (16 pts)

(a) Does the symmetric group S_5 have a subgroup of order 20? Justify your answer.

(b) Does the symmetric group S_5 have a subgroup of order 15? Justify your answer.

(c) Let G be a finite group. Is G isomorphic to a subgroup of the alternating group A_n for some positive integer n? Justify your answer.

(d) Determine the number of elements of order 2 in the alternating group A_5 .

3. (8 pts) Suppose σ is an element of order 2 in the alternating group A_n . Prove or disprove that there exists $\tau \in S_n$ such that $\tau^2 = \sigma$.

4. (8 pts) Find all finite groups that have exactly three conjugacy classes.

- 5. (12 pts) Let G be a finite group of order pqr, where p > q > r are prime.
 - (a) If G fails to have a normal subgroup of order p, determine the number of elements in G of order p.

(b) If G fails to have a normal subgroup of order q, prove that G has at least q^2 element of order q.

(c) Prove that G has a nontrivial normal subgroup.

6. (6 pts) Give an example of a commutative ring R with identity $1 \neq 0$ that has ideals I and J such that $\{ab \mid a \in I, b \in J\}$ is not an ideal of R. Justify your answer.

Math 553

7. (12 pts) Let \mathbb{Z} denote the ring of integers. Diagram the lattice of ideals of the polynomial ring $\mathbb{Z}[x]$ that contain the ideal (35, $x^2 - 2$). Give generators for each such ideal

8. (8 pts) Prove or disprove that a nonzero prime ideal P of a principal ideal domain R is a maximal ideal.

9. (7 pts) Prove that the polynomial

$$f_n(x) = (x-1)(x-2)\cdots(x-n) - 1$$

is irreducible over \mathbb{Z} for each integer $n \geq 1$.

10. (7 pts) Prove that the polynomial

$$g_n(x) = (x-1)(x-2)\cdots(x-n) + 1$$

is irreducible over \mathbb{Z} for each positive integer $n \neq 4$.

11. (5 pts) State Gauss' Lemma.

12. (8 pts) Assume that f(x) and g(x) are polynomials in $\mathbb{Q}[x]$ and that $f(x)g(x) \in \mathbb{Z}[x]$. Prove that the product of any coefficient of f(x) with any coefficient of g(x) is an integer.

13. (5 pts) True or false: If $f(x), g(x) \in \mathbb{Q}[x]$ are irreducible polynomials that have the same splitting field, then deg $f = \deg g$. Justify your answer.

- 14. (15) Let p be a prime integer and let \mathbb{F}_p denote the field with p elements.
 - (a) Prove or disprove that every finite algebraic extension field of \mathbb{F}_p is Galois.

(b) Let K and L be finite algebraic field extensions of \mathbb{F}_p . If $[K : \mathbb{F}_p] \leq [L : \mathbb{F}_p]$, does it follow that K is isomorphic to a subfield of L? Justify your answer.

(c) Let $\overline{\mathbb{F}_p}$ denote the algebraic closure of \mathbb{F}_p . If E is a subfield of $\overline{\mathbb{F}_p}$ and $[E : \mathbb{F}_p] = \infty$, does it follow that $E = \overline{\mathbb{F}_p}$? Justify your answer.

15. (8 pts) Let F be a field and let K_1/F and K_2/F be finite Galois extensions contained in an algebraic closure \overline{F} of F. Prove or disprove that the composite field K_1K_2 is Galois over F.

16. (8 pts) Let L/\mathbb{Q} be the Galois closure of the simple algebraic field extension $\mathbb{Q}(\alpha)/\mathbb{Q}$. Let p be a prime that divides [L:Q]. Prove that there exists a subfield F of L such that [L:F] = p and $L = F(\alpha)$.

17. (10 pts) Let $\alpha = \sqrt{2 + \sqrt{2}} \in \mathbb{R}$.

- (a) What is the minimal polynomial for α over \mathbb{Q} ?
- (b) List the conjugates of α over \mathbb{Q} .
- (c) List the conjugates of α over $\mathbb{Q}(\sqrt{2})$.
- (d) Is $\mathbb{Q}(\alpha)/\mathbb{Q}$ Galois ? Justify your answer.
- **18.** (10 pts) Let $\beta = \sqrt{1 + \sqrt{3}} \in \mathbb{R}$.
 - (a) What is the minimal polynomial for β over \mathbb{Q} ?
 - (b) List the conjugates of β over \mathbb{Q} .
 - (c) List the conjugates of β over $\mathbb{Q}(\sqrt{3})$.
 - (d) Is $\mathbb{Q}(\beta)/\mathbb{Q}$ Galois ? Justify your answer.

19. (8 pts) Let F be a subfield of the field \mathbb{C} of complex numbers and let $K \subseteq \mathbb{C}$ be an algebraic field extension of F having the property that each nonconstant polynomial in F[x] has at least one root in K. Prove that K is algebraically closed.

20. (6 pts) Give an example of a finite algebraic field extension L/K for which there exist infinitely many intermediate fields between K and L.

Math 553

21. (8 pts) Let *n* be a positive integer and *d* a positive integer that divides *n*. Suppose $\alpha \in \mathbb{R}$ is a root of the polynomial $x^n - 2 \in \mathbb{Q}[x]$. Prove that there is precisely one subfield *F* of $\mathbb{Q}(\alpha)$ with $[F : \mathbb{Q}] = d$.

22. (5) Suppose L/\mathbb{Q} is a finite field extension with $[L : \mathbb{Q}] = 4$. Is it possible that there exist precisely two subfields K_1 and K_2 of L for which $[L : K_i] = 2$? Justify your answer.