1. (20 pts) Let G be a nontrivial finite group.
(a) What is meant by a composition series for G ?
(b) State the Jordan-Hölder theorem.
(c) What does it mean for G to be simple?
(d) What does it mean for G to be solvable?
(e) Give an example of a simple group that is not solvable.
2. (16 pts)
(a) Does the symmetric group S_{5} have a subgroup of order 20? Justify your answer.
(b) Does the symmetric group S_{5} have a subgroup of order 15? Justify your answer.
(c) Let G be a finite group. Is G isomorphic to a subgroup of the alternating group A_{n} for some positive integer n ? Justify your answer.
(d) Determine the number of elements of order 2 in the alternating group A_{5}.
3. (8 pts) Suppose σ is an element of order 2 in the alternating group A_{n}. Prove or disprove that there exists $\tau \in S_{n}$ such that $\tau^{2}=\sigma$.
4. (8 pts) Find all finite groups that have exactly three conjugacy classes.
5. (12 pts) Let G be a finite group of order $p q r$, where $p>q>r$ are prime.
(a) If G fails to have a normal subgroup of order p, determine the number of elements in G of order p.
(b) If G fails to have a normal subgroup of order q, prove that G has at least q^{2} element of order q.
(c) Prove that G has a nontrivial normal subgroup.
6. (6 pts) Give an example of a commutative ring R with identity $1 \neq 0$ that has ideals I and J such that $\{a b \mid a \in I, b \in J\}$ is not an ideal of R. Justify your answer.
7. (12 pts) Let \mathbb{Z} denote the ring of integers. Diagram the lattice of ideals of the polynomial ring $\mathbb{Z}[x]$ that contain the ideal $\left(35, x^{2}-2\right)$. Give generators for each such ideal
8. (8 pts) Prove or disprove that a nonzero prime ideal P of a principal ideal domain R is a maximal ideal.
9. (7 pts) Prove that the polynomial

$$
f_{n}(x)=(x-1)(x-2) \cdots(x-n)-1
$$

is irreducible over \mathbb{Z} for each integer $n \geq 1$.
10. (7 pts) Prove that the polynomial

$$
g_{n}(x)=(x-1)(x-2) \cdots(x-n)+1
$$

is irreducible over \mathbb{Z} for each positive integer $n \neq 4$.
11. (5 pts) State Gauss' Lemma.
12. (8 pts) Assume that $f(x)$ and $g(x)$ are polynomials in $\mathbb{Q}[x]$ and that $f(x) g(x) \in \mathbb{Z}[x]$. Prove that the product of any coefficient of $f(x)$ with any coefficient of $g(x)$ is an integer.
13. (5 pts) True or false: If $f(x), g(x) \in \mathbb{Q}[x]$ are irreducible polynomials that have the same splitting field, then $\operatorname{deg} f=\operatorname{deg} g$. Justify your answer.
14. (15) Let p be a prime integer and let \mathbb{F}_{p} denote the field with p elements.
(a) Prove or disprove that every finite algebraic extension field of \mathbb{F}_{p} is Galois.
(b) Let K and L be finite algebraic field extensions of \mathbb{F}_{p}. If $\left[K: \mathbb{F}_{p}\right] \leq\left[L: \mathbb{F}_{p}\right]$, does it follow that K is isomorphic to a subfield of L ? Justify your answer.
(c) Let $\overline{\mathbb{F}_{p}}$ denote the algebraic closure of \mathbb{F}_{p}. If E is a subfield of $\overline{\mathbb{F}_{p}}$ and $\left[E: \mathbb{F}_{p}\right]=\infty$, does it follow that $E=\overline{\mathbb{F}_{p}}$? Justify your answer.
15. (8 pts) Let F be a field and let K_{1} / F and K_{2} / F be finite Galois extensions contained in an algebraic closure \bar{F} of F. Prove or disprove that the composite field $K_{1} K_{2}$ is Galois over F.
16. (8 pts) Let L / \mathbb{Q} be the Galois closure of the simple algebraic field extension $\mathbb{Q}(\alpha) / \mathbb{Q}$. Let p be a prime that divides $[L: Q]$. Prove that there exists a subfield F of L such that $[L: F]=p$ and $L=F(\alpha)$.
17. (10 pts) Let $\alpha=\sqrt{2+\sqrt{2}} \in \mathbb{R}$.
(a) What is the minimal polynomial for α over \mathbb{Q} ?
(b) List the conjugates of α over \mathbb{Q}.
(c) List the conjugates of α over $\mathbb{Q}(\sqrt{2})$.
(d) Is $\mathbb{Q}(\alpha) / \mathbb{Q}$ Galois ? Justify your answer.
18. (10 pts) Let $\beta=\sqrt{1+\sqrt{3}} \in \mathbb{R}$.
(a) What is the minimal polynomial for β over \mathbb{Q} ?
(b) List the conjugates of β over \mathbb{Q}.
(c) List the conjugates of β over $\mathbb{Q}(\sqrt{3})$.
(d) Is $\mathbb{Q}(\beta) / \mathbb{Q}$ Galois ? Justify your answer.
19. (8 pts) Let F be a subfield of the field \mathbb{C} of complex numbers and let $K \subseteq \mathbb{C}$ be an algebraic field extension of F having the property that each nonconstant polynomial in $F[x]$ has at least one root in K. Prove that K is algebraically closed.
20. (6 pts) Give an example of a finite algebraic field extension L / K for which there exist infinitely many intermediate fields between K and L.
21. (8 pts) Let n be a positive integer and d a positive integer that divides n. Suppose $\alpha \in \mathbb{R}$ is a root of the polynomial $x^{n}-2 \in \mathbb{Q}[x]$. Prove that there is precisely one subfield F of $\mathbb{Q}(\alpha)$ with $[F: \mathbb{Q}]=d$.
22. (5) Suppose L / \mathbb{Q} is a finite field extension with $[L: \mathbb{Q}]=4$. Is it possible that there exist precisely two subfields K_{1} and K_{2} of L for which $\left[L: K_{i}\right]=2$? Justify your answer.

