QUALIFYING EXAM – FALL 2006

This exam is to be done in two hours in one continuous sitting. Begin each question on a new sheet of paper. In answering any part of a question, you may assume the results in previous parts, even if you have not solved them. Be sure to provide *all details of your work*: give definitions of all terms you state, provide references for all theorems you quote, and prove all statements you claim.

Problem 1. Let (G, \circ) be a group. Show that G is abelian whenever Aut(G) is a cyclic group under composition. [10 points]

Problem 2. Let (G, \circ) be an abelian group. The torsion subgroup of G is defined as the collection of elements of finite order: $G_{\text{tors}} = \{g \in G \mid g^m = e \text{ for some integer } m > 0\}.$

- a. Show that the quotient group G/G_{tors} is torsion free i.e., it contains no nontrivial elements of finite order. [5 points]
- b. Show that G_{tors} is finite whenever G is finitely generated. (Do not assume that G is finite). [5 points]

Problem 3. Let (G, \circ) be a group of order |G| = 351. Show that G is solvable. [10 points]

Problem 4. Let (G, \circ) be a group, and $H \leq G$ be a subgroup of finite index. Show that there exists a normal subgroup $N \leq G$ contained in H which is also of finite index. (Do not assume that G is finite.) [10 points]

Problem 5. Let (G, \circ) be a finite group, and $\varphi : G \to G$ be a group homomorphism. Show that for all normal Sylow p-subgroups $P \trianglelefteq G$ we have $\varphi(P) \le P$. [10 points]

Problem 6. Let $(R, +, \cdot)$ be a commutative ring with $1 \neq 0$.

- a. Show that R is an integral domain if and only if (0) is a prime ideal. [5 points]
- b. Show that R is a field if and only if (0) is a maximal ideal. [5 points]

Problem 7. Let $(R, +, \cdot)$ be a Unique Factorization Domain. Choose an irreducible element $p \in R$, and define the localization at p as the ring of fractions $R_p = D^{-1}R$ with respect to the multiplicative set D = R - (p). Show that R_p is a Principal Ideal Domain. [10 points]

Problem 8. Let $(F, +, \cdot)$ be a field, and $F(\theta)/F$ be a finite, separable extension. Let L be the splitting field of the minimal polynomial $m_{\theta,F}(x) \in F[x]$. Prove that for every prime p dividing the degree [L:F], there exists a field K such that $F \subseteq K \subseteq L$, [L:K] = p, and $L = K(\theta)$. [10 points]

Problem 9. Let $(\mathbb{F}_p, +, \cdot)$ be a finite field whose cardinality p is prime. Fix a positive integer n which is not divisible by p, and let ζ_n be a primitive nth root of unity. Show that $[\mathbb{F}_p(\zeta_n) : \mathbb{F}_p] = \alpha$ is the least positive integer such that $p^{\alpha} \equiv 1 \pmod{n}$. [10 points]

Problem 10. Prove that the Galois group of the splitting field over \mathbb{Q} of $f(x) = x^4 + 4x^2 + 2$ is a cyclic group. [10 points]