This exam is to be done in two hours in one continuous sitting. Begin each question on a new sheet of paper. In answering any part of a question, you may assume the results in previous parts, even if you have not solved them. Be sure to provide all details of your work: give definitions of all terms you state, provide references for all theorems you quote, and prove all statements you claim.

Problem 1. Let (G, \circ) be a group. Show that G is abelian whenever $\operatorname{Aut}(G)$ is a cyclic group under composition. [10 points]

Problem 2. Let (G, \circ) be an abelian group. The torsion subgroup of G is defined as the collection of elements of finite order: $G_{\text {tors }}=\left\{g \in G \mid g^{m}=e\right.$ for some integer $\left.m>0\right\}$.
a. Show that the quotient group $G / G_{\text {tors }}$ is torsion free i.e., it contains no nontrivial elements of finite order. [5 points]
b. Show that $G_{\text {tors }}$ is finite whenever G is finitely generated. (Do not assume that G is finite). [5 points]

Problem 3. Let (G, \circ) be a group of order $|G|=351$. Show that G is solvable. [10 points]

Problem 4. Let (G, \circ) be a group, and $H \leq G$ be a subgroup of finite index. Show that there exists a normal subgroup $N \unlhd G$ contained in H which is also of finite index. (Do not assume that G is finite.) [10 points]

Problem 5. Let (G, \circ) be a finite group, and $\varphi: G \rightarrow G$ be a group homomorphism. Show that for all normal Sylow p-subgroups $P \unlhd G$ we have $\varphi(P) \leq P$. [10 points]

Problem 6. Let $(R,+, \cdot)$ be a commutative ring with $1 \neq 0$.
a. Show that R is an integral domain if and only if (0) is a prime ideal. [5 points]
b. Show that R is a field if and only if (0) is a maximal ideal. [5 points]

Problem 7. Let $(R,+, \cdot)$ be a Unique Factorization Domain. Choose an irreducible element $p \in R$, and define the localization at p as the ring of fractions $R_{p}=D^{-1} R$ with respect to the multiplicative set $D=R-(p)$. Show that R_{p} is a Principal Ideal Domain. [10 points]

Problem 8. Let $(F,+, \cdot)$ be a field, and $F(\theta) / F$ be a finite, separable extension. Let L be the splitting field of the minimal polynomial $m_{\theta, F}(x) \in F[x]$. Prove that for every prime p dividing the degree $[L: F]$, there exists a field K such that $F \subseteq K \subseteq L,[L: K]=p$, and $L=K(\theta)$. [10 points]

Problem 9. Let $\left(\mathbb{F}_{p},+, \cdot\right)$ be a finite field whose cardinality p is prime. Fix a positive integer n which is not divisible by p, and let ζ_{n} be a primitive nth root of unity. Show that $\left[\mathbb{F}_{p}\left(\zeta_{n}\right): \mathbb{F}_{p}\right]=\alpha$ is the least positive integer such that $p^{\alpha} \equiv 1(\bmod n)$. [10 points]

Problem 10. Prove that the Galois group of the splitting field over \mathbb{Q} of $f(x)=x^{4}+4 x^{2}+2$ is a cyclic group. [10 points]

