QUALIFYING EXAMINATION Math 553 August 2007 - Profs. Lipman and Ulrich

BEGIN EACH QUESTION (I-IV) ON A NEW SHEET OF PAPER.

In answering any part of a question, you may assume the results in previous parts, even if you haven't done them.

[Bold numbers] INDICATE POINTS (60 TOTAL).

I. (a) [3] Let a be a positive integer. Prove that in the cyclic group \mathbb{Z}_n of order n > 0, the number of elements x satisfying ax = 0 is the gcd (a, n).

(b) [7] Let G be an abelian group of order n^r , and suppose that for each positive a dividing n, the number of elements $x \in G$ satisfying ax = 0 is a^r . Prove that G is isomorphic to $(\mathbb{Z}_n)^r$.

II. [10] Let G be a group of order ap^n where p is prime and (a, p) = (a, p - 1) = 1. Suppose that some Sylow p-subgoup P < G is cyclic. Prove that P is contained in the center of its normalizer N(P).

<u>Hint</u>. Begin by describing a homomorphism $N(P) \to \operatorname{Aut}(P)$ whose kernel is the centralizer of P.

III. [15] Let R be a unique factorization domain, with fraction field F. Let M be a multiplicatively closed subset of R, containing 1 but not 0. Prove that the ring of fractions

$$R_M := \{ r/m \mid r \in R, \ m \in M \} \subset F$$

is also a unique factorization domain, whose prime elements are all the associates in R_M (that is, multiples by units) of prime elements $p \in R$ such that $(pR) \cap M$ is empty.

IV. (a) [2] Show that the polynomial $X^4 - 10X^2 + 1$ is irreducible in $\mathbb{Z}[X]$.

(b) [6] Determine the splitting field E of $X^4 - 10X^2 + 1$ over the field \mathbb{Q} of rational numbers; and describe *all* the subfields of E. (Justify your answer).

(c) [2] Let F be a finite field. Show that at least one of 2, 3 or 6 is a square in F.

(d) [3] Show that the polynomial $X^4 - 10X^2 + 1$ is reducible in $(\mathbb{Z}/p\mathbb{Z})[X]$ for all primes p.

(e) [3] Let F be a field, and $g \in F[X]$ an irreducible separable polynomial of degree d whose Galois group G is cyclic. Show that, as a group of permutations of the roots of g, G contains a cycle of length d.

(f) [6] Let $f \in \mathbb{Z}[X]$ be a monic polynomial with integer coefficients, of even degree > 1. Prove that if the discriminant Δ_f of f is a square in \mathbb{Z} then for every prime $p \in \mathbb{Z}$, the natural image of f in $(\mathbb{Z}/p\mathbb{Z})[X]$ is reducible. Does this condition on Δ_f imply that f itself is reducible? (Justify your answer).

(g) [3] Does the preceding assertion hold when f has odd degree? (Justify your answer).

<u>Hint</u>. Compute the discriminant of $X^3 - 3X + 1$.