QUALIFYING EXAMINATION

Math 553

August 2007 - Profs. Lipman and Ulrich

Begin each question (I-IV) on a new sheet of paper.
In answering any part of a question, you may assume the results in previous parts, even if YOU HAVEN'T DONE THEM.
[Bold numbers] INDICATE POINTS (60 TOTAL).
I. (a) [3] Let a be a positive integer. Prove that in the cyclic group \mathbb{Z}_{n} of order $n>0$, the number of elements x satisfying $a x=0$ is the $\operatorname{gcd}(a, n)$.
(b) [7] Let G be an abelian group of order n^{r}, and suppose that for each positive a dividing n, the number of elements $x \in G$ satisfying $a x=0$ is a^{r}. Prove that G is isomorphic to $\left(\mathbb{Z}_{n}\right)^{r}$.
II. [10] Let G be a group of order $a p^{n}$ where p is prime and $(a, p)=(a, p-1)=1$. Suppose that some Sylow p-subgoup $P<G$ is cyclic. Prove that P is contained in the center of its normalizer $N(P)$.

Hint. Begin by describing a homomorphism $N(P) \rightarrow \operatorname{Aut}(P)$ whose kernel is the centralizer of P.
III. [15] Let R be a unique factorization domain, with fraction field F. Let M be a multiplicatively closed subset of R, containing 1 but not 0 . Prove that the ring of fractions

$$
R_{M}:=\{r / m \mid r \in R, m \in M\} \subset F
$$

is also a unique factorization domain, whose prime elements are all the associates in R_{M} (that is, multiples by units) of prime elements $p \in R$ such that $(p R) \cap M$ is empty.
IV. (a) [2] Show that the polynomial $X^{4}-10 X^{2}+1$ is irreducible in $\mathbb{Z}[X]$.
(b) [6] Determine the splitting field E of $X^{4}-10 X^{2}+1$ over the field \mathbb{Q} of rational numbers; and describe all the subfields of E. (Justify your answer).
(c) [2] Let F be a finite field. Show that at least one of 2,3 or 6 is a square in F.
(d) [3] Show that the polynomial $X^{4}-10 X^{2}+1$ is reducible in $(\mathbb{Z} / p \mathbb{Z})[X]$ for all primes p.
(e) [3] Let F be a field, and $g \in F[X]$ an irreducible separable polynomial of degree d whose Galois group G is cyclic. Show that, as a group of permutations of the roots of g, G contains a cycle of length d.
(f) [6] Let $f \in \mathbb{Z}[X]$ be a monic polynomial with integer coefficients, of even degree >1. Prove that if the discriminant Δ_{f} of f is a square in \mathbb{Z} then for every prime $p \in \mathbb{Z}$, the natural image of f in $(\mathbb{Z} / p \mathbb{Z})[X]$ is reducible. Does this condition on Δ_{f} imply that f itself is reducible? (Justify your answer).
(g) [3] Does the preceding assertion hold when f has odd degree? (Justify your answer).

Hint. Compute the discriminant of $X^{3}-3 X+1$.

