QUALIFYING EXAMINATION
 JANUARY 2005
 MATH 553-Prof. Yu

1. [15 points] Let $D_{4}=\langle(1234),(12)(34)\rangle \subset S_{4}$ be the Dihedral group of order 8 .
(a) Show that D_{4} has exactly three subgroups H_{1}, H_{2}, H_{3} of order 4 .
(b) Show that exactly one of H_{1}, H_{2}, H_{3} is cyclic.
(c) Show that $K=H_{1} \cap H_{2} \cap H_{3}$ is the commutator subgroup of D_{4}.
2. [20 points] Let s, t be indeterminates over \mathbb{Q}. Consider $F=\mathbb{Q}(s, t)$ and the polynomial $f=$ $x^{4}+s x^{2}+t \in F[x]$. It is easy to verify

$$
\begin{aligned}
f(x) & =\left(x^{2}-\frac{-s+\sqrt{s^{2}-4 t}}{2}\right)\left(x^{2}-\frac{-s-\sqrt{s^{2}-4 t}}{2}\right) \\
& =\left(x^{2}+\sqrt{2 \sqrt{t}-s x}+\sqrt{t}\right)\left(x^{2}-\sqrt{2 \sqrt{t}-s} x+\sqrt{t}\right)
\end{aligned}
$$

Let E be the splitting field of f over F.
(a) Show that

$$
\operatorname{Gal}(E / F(\sqrt{t})) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \simeq \operatorname{Gal}\left(E / F\left(\sqrt{s^{2}-4 t}\right)\right)
$$

(b) Show that $\operatorname{Gal}(E / F) \simeq D_{4}$, the Dihedral group of order 8 .
(c) Let K be the commutator subgroup of $\operatorname{Gal}(E / F) \simeq D_{4}$. Determine E^{K}.
(d) Let H be the unique subgroup of $\operatorname{Gal}(E / F)$ such that H is cyclic of order 4. Determine E^{H}.
3. [15 points] Let $q=p^{m}>0$ be a prime power. Let $F=\mathbb{F}_{q}$ be a finite field of order q. An element $f(x) \in F[x]$ is called monic if its leading coefficient is 1 , square-free if f is not divisible by g^{2} for any non-zero $g \in F[x]$ of positive degree. For $n \geq 1$, let

$$
\begin{aligned}
& P_{n}=\{f \in F[x]: f \text { is monic, irreducible, of degree } n\} \\
& Q_{n}=\{f \in F[x]: f \text { is monic, square-free, of degree } n\}
\end{aligned}
$$

(a) Show that $\# P_{2}=\left(q^{2}-q\right) / 2, \# Q_{2}=q^{2}-q$, here $\# X$ denotes the cardinality of the set X.
(b) Show that $\# Q_{3}=q^{3}-q$.
(c) Show that $\# Q_{4}=q^{4}-q$.
4. [15 points] Let F be a field of characteristic $p \geq 0$ and $f \in F[x]$ be a separable polynomial of degree n. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the distinct roots of f (in a suitable extension field). Put

$$
\begin{equation*}
a=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \alpha_{\sigma(1)}^{0} \alpha_{\sigma(2)}^{1} \cdots \alpha_{\sigma(n)}^{n-1}=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right), \tag{*}
\end{equation*}
$$

so that a^{2} is the discriminant of f (you can take for granted that $\left({ }^{*}\right)$ is an equality). Let G be the Galois group of f, which is naturally a subgroup of S_{n}.
(a) Assume $p \neq 2$. Show that $G \subset A_{n}$ if and only if $a \in F$.
(b) Assume $p=2$. Show that $a \in F$.
(c) Assume $p=2$. Put $b=\sum_{\sigma \in A_{n}} \alpha_{\sigma(1)}^{0} \alpha_{\sigma(2)}^{1} \cdots \alpha_{\sigma(n)}^{n-1}$. Show that $G \subset A_{n}$ if and only if $b \in F$.
5. [10 points] Let F be a field. Let $F[x]$ be the polynomial ring over F and $F(x)$ the field of fractions of $F[x]$. Let R be the subring of $F(x)$ generated by $F[x]$ and x^{-1}. Show that R is a principal ideal domain.
6. [10 points] Let $n \geq 1$ be an integer, F a field. Show that

$$
x^{n}+y^{n}+z^{n}
$$

is irreducible in $F[x, y, z]$ if and only if $n \in F^{\times}$.
7. [10 points] Let E / F be a simple extension of fields of degree n.
(a) Regard E as a vector space over F. For $\alpha \in E$, let $f_{\alpha}: E \rightarrow E$ be the F-linear transformation defined by $f_{\alpha}(\beta)=\alpha \beta$. Show that $\alpha \mapsto f_{\alpha}$ is a ring homomorphism φ from E to the ring R of F-linear transformations from E to itself.
(b) Notice that $R \simeq M_{n}(F)$, the ring of $n \times n$ matrices over F. Show that there is no ring homomorphism $E \rightarrow M_{n-1}(F)$.
8. [15 points] Let G be a finite group of order $2^{e} n$, where n is odd. Assume that the Sylow 2 -subgroups of G are cyclic.
(a) Show that if H is a subgroup of G, then the Sylow 2 -subgroups of H are cyclic.
(b) Let $u \in G$ be such that $\langle u\rangle$ is a Sylow 2-subgroup. Let $R: G \rightarrow S_{G}$ be such that $R(g)$ is the permutation sending x to $g x$. Show that $R(u)$ is an odd permutation.
(c) Show that G contains a subgroup of index 2^{i}, for $i=1,2, \ldots, e$.

