QUALIFYING EXAMINATION JANUARY 2005 MATH 553 - Prof. Yu

1. [15 points] Let $D_4 = \langle (1234), (12)(34) \rangle \subset S_4$ be the Dihedral group of order 8.

- (a) Show that D_4 has exactly three subgroups H_1, H_2, H_3 of order 4.
- (b) Show that exactly one of H_1, H_2, H_3 is cyclic.
- (c) Show that $K = H_1 \cap H_2 \cap H_3$ is the commutator subgroup of D_4 .

2. [20 points] Let s, t be indeterminates over \mathbb{Q} . Consider $F = \mathbb{Q}(s, t)$ and the polynomial $f = x^4 + sx^2 + t \in F[x]$. It is easy to verify

$$f(x) = \left(x^2 - \frac{-s + \sqrt{s^2 - 4t}}{2}\right) \left(x^2 - \frac{-s - \sqrt{s^2 - 4t}}{2}\right) \\ = \left(x^2 + \sqrt{2\sqrt{t} - sx} + \sqrt{t}\right) \left(x^2 - \sqrt{2\sqrt{t} - sx} + \sqrt{t}\right)$$

Let E be the splitting field of f over F.

(a) Show that

$$\operatorname{Gal}(E/F(\sqrt{t})) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \simeq \operatorname{Gal}(E/F(\sqrt{s^2 - 4t})).$$

- (b) Show that $\operatorname{Gal}(E/F) \simeq D_4$, the Dihedral group of order 8.
- (c) Let K be the commutator subgroup of $\operatorname{Gal}(E/F) \simeq D_4$. Determine E^K .
- (d) Let H be the unique subgroup of $\operatorname{Gal}(E/F)$ such that H is cyclic of order 4. Determine E^H .

3. [15 points] Let $q = p^m > 0$ be a prime power. Let $F = \mathbb{F}_q$ be a finite field of order q. An element $f(x) \in F[x]$ is called *monic* if its leading coefficient is 1, square-free if f is not divisible by g^2 for any non-zero $g \in F[x]$ of positive degree. For $n \ge 1$, let

- $P_n = \{ f \in F[x] : f \text{ is monic, irreducible, of degree } n \},$ $Q_n = \{ f \in F[x] : f \text{ is monic, square-free, of degree } n \}.$
- (a) Show that $\#P_2 = (q^2 q)/2$, $\#Q_2 = q^2 q$, here #X denotes the cardinality of the set X.
- (b) Show that $\#Q_3 = q^3 q$.
- (c) Show that $\#Q_4 = q^4 q$.

4. [15 points] Let F be a field of characteristic $p \ge 0$ and $f \in F[x]$ be a separable polynomial of degree n. Let $\alpha_1, \ldots, \alpha_n$ be the distinct roots of f (in a suitable extension field). Put

(*)
$$a = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{\sigma(1)}^0 \alpha_{\sigma(2)}^1 \cdots \alpha_{\sigma(n)}^{n-1} = \prod_{i < j} (\alpha_i - \alpha_j),$$

so that a^2 is the discriminant of f (you can take for granted that (*) is an equality). Let G be the Galois group of f, which is naturally a subgroup of S_n .

- (a) Assume $p \neq 2$. Show that $G \subset A_n$ if and only if $a \in F$.
- (b) Assume p = 2. Show that $a \in F$.
- (c) Assume p = 2. Put $b = \sum_{\sigma \in A_n} \alpha_{\sigma(1)}^0 \alpha_{\sigma(2)}^1 \cdots \alpha_{\sigma(n)}^{n-1}$. Show that $G \subset A_n$ if and only if $b \in F$.

5. [10 points] Let F be a field. Let F[x] be the polynomial ring over F and F(x) the field of fractions of F[x]. Let R be the subring of F(x) generated by F[x] and x^{-1} . Show that R is a principal ideal domain.

6. [10 points] Let $n \ge 1$ be an integer, F a field. Show that

$$x^n + y^n + z^n$$

is irreducible in F[x, y, z] if and only if $n \in F^{\times}$.

7. [10 points] Let E/F be a simple extension of fields of degree n.

- (a) Regard *E* as a vector space over *F*. For $\alpha \in E$, let $f_{\alpha} : E \to E$ be the *F*-linear transformation defined by $f_{\alpha}(\beta) = \alpha\beta$. Show that $\alpha \mapsto f_{\alpha}$ is a ring homomorphism φ from *E* to the ring *R* of *F*-linear transformations from *E* to itself.
- (b) Notice that $R \simeq M_n(F)$, the ring of $n \times n$ matrices over F. Show that there is no ring homomorphism $E \to M_{n-1}(F)$.

8. [15 points] Let G be a finite group of order $2^e n$, where n is odd. Assume that the Sylow 2-subgroups of G are cyclic.

- (a) Show that if H is a subgroup of G, then the Sylow 2-subgroups of H are cyclic.
- (b) Let $u \in G$ be such that $\langle u \rangle$ is a Sylow 2-subgroup. Let $R : G \to S_G$ be such that R(g) is the permutation sending x to gx. Show that R(u) is an odd permutation.
- (c) Show that G contains a subgroup of index 2^i , for i = 1, 2, ..., e.