QUALIFYING EXAMINATION Math 553 August 2005 - Prof. Lipman

BEGIN EACH QUESTION (I-IV) ON A NEW SHEET OF PAPER.

IN ANSWERING ANY PART OF A QUESTION, YOU MAY ASSUME THE RESULTS IN PREVIOUS PARTS, EVEN IF YOU HAVEN'T DONE THEM.

[Bold numbers] INDICATE POINTS (60 TOTAL).

I. Let G be a group of order 24 containing no element of order 6. Let T < G be a Sylow 3-subgroup. *Prove*:

- (a) **[3]** G has no normal subgroup of order 2.
- (b) [3] The centralizer of T is T itself.
- (c) [3] The subgroup T has exactly 4 conjugates.

(d) [3] If N_1 , N_2 , N_3 , and N_4 are the normalizers of the conjugates of T, and $i \neq j$, then $N_i \cap N_j$ does not contain a subgroup of order 3.

(e) [3] G is isomorphic to the symmetric group S_4 .

<u>Hint</u>. Consider the action of G by conjugation on the set of conjugates of T.

II. Let R be a unique factorization domain, let (x_{ij}) $(1 \le i \le n, 1 \le j \le n)$ be a family of independent indeterminates, and let R_{nn} be the polynomial ring $R[x_{11}, x_{12}, \ldots, x_{21}, x_{22}, \ldots, x_{nn}]$. Let $D_n \in R_{nn}$ be the determinant of the $n \times n$ matrix

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix}$$

and let $D_{n-1} \in R_{nn}$ be the cofactor of x_{nn} , i.e., the determinant of the matrix obtained from the above one by deleting the *n*-th row and the *n*-th column.

Prove:

- (a) [5] If n > 1 then, in R_{nn} , D_{n-1} does not divide D_n .
- <u>Hint</u>. Substitute 1 for x_{n1} and for $x_{i,i+1}$ $(1 \le i < n)$; and substitute 0 for all other x_{ij} .
- (b) [10] D_n generates a prime ideal in R_{nn} .

<u>Hint</u>. Expand D_n along the bottom row, and use induction on n.

III. [15] Let F be a field and E = F(c) a finite separable field extension of F. Let $K \supset E$ be a splitting field of the minimal polynomial of c over F. Prove that for every prime p dividing the degree [K : F] there exists a field L between F and K such that [K : L] = p and K = L(c).

IV. (a) [3] Show that $e^{2\pi i/(6r)}$ $(0 < r \in \mathbb{Z})$ is a root of the polynomial $f(X) := X^{2r} - X^r + 1 \in \mathbb{Q}[X]$.

- (b) [6] Prove that f(X) in (a) is irreducible if and only if r is of the form $2^a 3^b$ $(a, b \ge 0)$.
- (c) [6] Prove that $X^{2r} + X^r + 1 \in \mathbb{Q}[X]$ is irreducible if and only if r is a power of 3.