QUALIFYING EXAMINATION JANUARY 2004 MATH 553 - Prof. Moh

1) (10 points) Find the prime decomposition of 7 + 4i in the Gaussian intergers $\mathbb{Z}[i]$.

2) (10 points) Let the complex projective line $\mathbb{P}^1_{\mathbb{C}} = \mathbb{C} \cup \infty$, here \mathbb{C} is the set of complex numbers. Let **G** be the fractional linear transformation group defined as follows,

$$G = \{\pi : \pi(x) = \frac{ax+b}{cx+d}, ad-bc \neq 0\}$$

Let $\mathbf{T} = \{0, 1, \infty\}$. Find $\operatorname{Stab}(\mathbf{T})$.

3) (10 points) Find the center of the group of all *rigid motions*, i.e., all mappings which preserve distances, of \mathbb{R}^2 where \mathbb{R} is the set of all real numbers.

4) (10 points) Suppose that $o(\mathbf{G}) < 60$ where \mathbf{G} is a simple group. Show that $o(\mathbf{G})$ is a prime number.

5) (10 points) Find all composition series of the dihedral group \mathbf{D}_4 .

6) (10 points) Prove that for any $n \geq 1$ the following polynomial in $\mathbb{Q}[\mathbf{x}]$ has no multiple root,

$$f(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

7) (10 points) Show that $\mathbb{Z}[i]/(3+2i)$ is a field where $\mathbb{Z}[i]$ is the ring of Gaussian integers. What is its characteristic?

8) (10 points) Let α satisfies an irreducible polynomial of odd degree in $\mathbb{K}[\mathbf{x}]$. Show that $\mathbb{K}[\alpha] = \mathbb{K}[\alpha^2]$.

9) (10 points) Show that $[\mathbb{Q}[e^{\frac{2\pi i}{8}}]:\mathbb{Q}]=2.$

10) (10 points) Let \mathbb{L} be the splitting field of the polynomial $x^4 - 2$ over \mathbb{Q} . Find the Galois group of \mathbb{L} over \mathbb{Q} .