QUALIFYING EXAMINATION
 JANUARY 2003
 MATH 553 - Prof. Moh

1) (10 points) Let GL(2,R) be the multiplicative group of all non-singular 2×2 matrices with real entries. Let the group $\mathrm{GL}(2, \mathbf{R})$ acts from left on $\mathbf{R} \times \mathbf{R}$. Find all orbits.
2) (10 points) (A) Find a commutative ring without any maximal ideal. (B) Prove or disprove: a group \mathbf{G} must be commutative if there is a commutative normal subgroup \mathbf{H} such that \mathbf{G} / \mathbf{H} is commutative.
3) (10 points) Let \mathbf{R} be a commutative ring and $f(x) \in \mathbf{R}[\mathrm{x}]$ is nilpotent. Show that there is an element $0 \neq a \in \mathbf{R}$ such that $a f(x)=0$.
4) (10 points) Let p, q be positive prime numbers. Show that any group of order $p^{2} q$ is not simple.
5) (10 points) Find a greatest common divisor of $7+i$ and $5+9 i$ in the ring of Gaussian integers $\mathbf{Z}[i]$.
6) (10 points) In the group $\mathbf{G L}(\mathbf{2}, \mathbf{R})$, let

$$
g_{1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad g_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right)
$$

Find $o\left(g_{1}\right), o\left(g_{2}\right), o\left(g_{1} g_{2}\right)$.
7) (10 points) Let \mathbf{R} be a finite field, and n any positive integer. Show that there is an irreducible polynomial of degree n in $\mathbf{R}[\mathrm{x}]$.
8) (10 points) Let \mathbf{R} be a non-commutative ring. Show that if $1-a b$ is invertible for some elements $a, b \in \mathbf{R}$, then $1-b a$ is invertible $\in \mathbf{R}$.
9) (10 points) Let \mathbf{L} be the splitting field of the polynomial $x^{4}-2$ over \mathbf{Q}. Find the Galois group of \mathbf{L} over \mathbf{Q}.
10) (10 points) Let \mathbf{K} be a finite field of characteristic p. Show that $x^{p}-x-a$ for some element $a \in \mathbf{K}$ is either irreducible or can be factored into a product of linear polynomials.

