QUALIFYING EXAMINATION JANUARY 2003 MATH 553 - Prof. Moh

1) (10 points) Let $GL(2, \mathbb{R})$ be the multiplicative group of all non-singular 2×2 matrices with real entries. Let the group $GL(2, \mathbb{R})$ acts from left on $\mathbb{R} \times \mathbb{R}$. Find all orbits.

2) (10 points) (A) Find a commutative ring without any maximal ideal. (B) Prove or disprove: a group **G** must be commutative if there is a commutative normal subgroup **H** such that \mathbf{G}/\mathbf{H} is commutative.

3) (10 points) Let **R** be a commutative ring and $f(x) \in \mathbf{R}[\mathbf{x}]$ is nilpotent. Show that there is an element $0 \neq a \in \mathbf{R}$ such that af(x) = 0.

4) (10 points) Let p, q be positive prime numbers. Show that any group of order p^2q is not simple.

5) (10 points) Find a greatest common divisor of 7 + i and 5 + 9i in the ring of Gaussian integers $\mathbf{Z}[i]$.

6) (10 points) In the group $\mathbf{GL}(2,\mathbf{R})$, let

$$g_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$

Find $o(g_1), o(g_2), o(g_1g_2)$.

7) (10 points) Let **R** be a finite field, and *n* any positive integer. Show that there is an irreducible polynomial of degree *n* in $\mathbf{R}[\mathbf{x}]$.

8) (10 points) Let **R** be a non-commutative ring. Show that if 1 - ab is invertible for some elements $a, b \in \mathbf{R}$, then 1 - ba is invertible $\in \mathbf{R}$.

9) (10 points) Let L be the splitting field of the polynomial $x^4 - 2$ over Q. Find the Galois group of L over Q.

10) (10 points) Let **K** be a finite field of characteristic p. Show that $x^p - x - a$ for some element $a \in \mathbf{K}$ is either irreducible or can be factored into a product of linear polynomials.