QUALIFYING EXAMINATION

AUGUST 2003
MATH 553 - Prof. Lipman

Begin each question (I-IV) on a new sheet of paper.

In answering any part of a question, you may assume the results in previous parts, even if YOU HAVEN'T DONE THEM.
[Bold numbers] INDICATE POINTS (60 TOTAL).
I. Let G be a group of order $p q r$, where $p>q>r$ are prime. Prove:
(a) [6] If G has no normal subgroup of order p, then G has exactly $p q r-q r$ elements of order p.
(b) [6] If G has no normal subgroup of order q, then G has more than q^{2} elements of order q.
(c) $[6] G$ is solvable.
II. Let R be a ring such that $x^{2}=x$ for all $x \in R$. (Such rings are called Boolean.) Prove:
(a) $[1]$ In $R, 2=0$.
(b) [2] R is commutative. (Hint: expand $(x+y)(x+y)$.)
(c) [3] For an ideal $p \neq R$, the following conditions are equivalent:
(i) p is prime.
(ii) For every $x \in R$, either $x \in p$ or $1-x \in p$.
(iii) $R / p R \cong \mathbb{F}_{2}$, the field with two elements.
(d) [4] Let S be the set of prime ideals in R. Then R is isomorphic to a subring of the ring of all maps of sets $S \rightarrow \mathbb{F}_{2}$ [with sum and product of two maps f, g given by

$$
(f+g)(p)=f(p)+g(p), \quad(f g)(p)=f(p) g(p) .]
$$

Hint: For $x \in R$, consider the map x^{*} given by $x^{*}(p)=(x+p R) \in R / p R$. Note that $x^{*} \equiv 0$ implies that $1-x$ is a unit. (You may assume the result that every non-unit ideal is contained in a maximal ideal.)
III. (a) [3] Prove that the ring $R=\mathbb{Z}[\sqrt{-2}]$ is Euclidean.
(b) [3] Show that $R /(3+2 \sqrt{-2})$ is a field. What is the characteristic of this field?
(c) [4] Show that the polynomial $X^{4}+3$ is irreducible over the field \mathbb{F}_{17} of 17 elements; and deduce that $f(X)=X^{4}-170 X^{3}+9+4 \sqrt{-2} \in R[X]$ is irreducible.
(d) [2] Is the polynomial $Y^{4}-f(X) \in R[X, Y]$ irreducible? (Why?)
IV. Let K be a field of characteristic $p \geq 0$, and n a positive integer not divisible by p. Let $0 \neq a \in K$, let L be a splitting field over K of the polynomial $X^{n}-a$, and let $\alpha \in L$ be a root of this polynomial.
(a) [3] Prove that L contains an element ζ which has exactly n distinct powers.
(b) [5] Prove that the galois group $\mathcal{G}(L / K(\zeta))$ is cyclic of order n / e, where e is the largest divisor of n such that a is an e-th power in $K(\zeta)$.

Hint: If f divides n then a is an f-th power in $K(\zeta) \Longleftrightarrow \alpha^{n / f}$ is \mathcal{G}-invariant.
(c) [4] Calculate the degree $[K(\alpha): K(\alpha) \cap K(\zeta)]$.
(d) [6] Set $\beta:=\alpha^{n / e} \in K(\zeta)$. Prove that for each divisor d of n / e there is a unique field F isomorphic to $K(\zeta)[X] /\left(X^{d}-\beta\right)$ and such that $K(\zeta) \subset F \subset L$; and that there are no other fields between $K(\zeta)$ and L.
(e) [2] Prove that the monic irreducible factors of $X^{n}-a$ in $K(\zeta)[X]$ are the e polynomials

$$
X^{n / e}-\left(\zeta^{i} \alpha\right)^{n / e}, \quad 0 \leq i<e
$$

