	Heinzer	Math 553	Qualifying Exam	3 January 2001
--	---------	----------	-----------------	----------------

Let \mathbb{Z} denote the ring of integers and $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ the fields of rational, real and complex numbers, respectively.

- (14) 1. Let k be a field and let k(x) be the field of rational functions in x with coefficients from k. Let $t \in k(x)$ be the rational function p(x)/q(x), where $p(x), q(x) \in k[x]$ are relatively prime polynomials and $q(x) \neq 0$. Assume that at least one of p(x) and q(x) is a nonconstant polynomial.
 - (i) Prove that k(x) is algebraic over k(t) and determine [k(x):k(t)].

(ii) Write down the minimal polynomial for x over the field k(t).

(8) 2. Prove that an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ cannot have a multiple root.

(8) 3. Give an example of a field F having characteristic p > 0 and an irreducible polynomial $f(x) \in F[x]$ that has a multiple root.

(10) 4. Let K/F be an algebraic field extension. Suppose R is a subring of K such that $F \subseteq R$. Prove or disprove that R is a field.

- (8) 5. Suppose $\alpha \in \mathbb{C}$ is algebraic over \mathbb{Q} .
 - (i) Define "α can be expressed by radicals" or the equivalent phrase "α can be solved for in terms of radicals."

(ii) For a polynomial $f(x) \in \mathbb{Q}[x]$, define "f(x) can be solved by radicals."

- (14) 6. Let G be the Galois group of an irreducible polynomial $f(x) \in \mathbb{Q}[x]$, where deg f = 5.
 - (i) What integers are possible for the order of G? Explain your answer.

(ii) If G contains an element of order 3, what integers are possible for the order of G? Explain your answer.

- (20) 7. Let $\omega \in \mathbb{C}$ be a primitive 12-th root of unity. (i) What is $[\mathbb{Q}(\omega) : \mathbb{Q}]$?
 - (ii) List the distinct conjugates of $\omega + \omega^{-1}$ over \mathbb{Q} .

(iii) What is the group $\operatorname{Aut}(\mathbb{Q}(\omega + \omega^{-1})/\mathbb{Q})$? Is $\mathbb{Q}(\omega + \omega^{-1})$ Galois over \mathbb{Q} ?

(iv) Diagram the lattice of subfields of $\mathbb{Q}(\omega)$ giving generators for each.

(14) 8. Diagram the lattice of ideals of the ring $\mathbb{Z}[x]/(15, x^3 + 1)$.

(8) 9. Let $f(x) \in \mathbb{Q}[x]$ be a monic polynomial of degree *n*. Define the discriminant of f(x).

- (18) 10. Let p be a prime. Recall that a field extension K/F is called a p-extension if K/F is Galois and [K:F] is a power of p.
 - (i) Suppose K/F and L/K are *p*-extensions. Prove that the Galois closure of L/F is a *p*-extension.

(ii) Give an example where K/F and L/K are *p*-extensions, but L/F is not Galois.

6

- (16) 11. Let K/F be a finite separable algebraic field extension and let α ∈ K.
 (i) Define the norm N_{K/F}(α) of α from K to F.
 - (ii) Prove that $N_{K/F}(\alpha) \in F$.

- (iii) Define the trace $Tr_{K/F}(\alpha)$ of α from K to F.
- (iv) Prove that $Tr_{K/F}(\alpha) \in F$.

(8) 12. Let \mathbb{F}_5 denote the field with 5 elements. What is the order of the group $SL_2(\mathbb{F}_5)$ of 2×2 matrices with entries in \mathbb{F}_5 that have determinant 1?

(10) 13. Suppose R is an integral domain in which each prime ideal is a principal ideal. Prove or disprove that every ideal of R is principal.

(10) 14. Let R be a commutative ring with identity $1 \neq 0$ and let $f(x), g(x) \in R[x]$ be polynomials. Let c(f), c(g) denote the ideals of R generated by the coefficients of f(x), g(x), respectively. If c(f) = c(g) = R, prove that the ideal c(fg) generated by the coefficients of the product f(x)g(x) is also equal to R.

(14) 15. Suppose L/\mathbb{Q} is a finite algebraic field extension for which there exists a chain

$$\mathbb{Q} = L_0 \subset L_1 \subset \cdots \subset L_{n-1} \subset L_n = L,$$

where $[L_{i+1}: L_i] = 2$, for each i = 0, ..., n-1. If K is a subfield of L, prove or disprove that there exists for some integer $m \le n$ a chain

$$\mathbb{Q} = K_0 \subset K_1 \subset \cdots \subset K_{m-1} \subset K_m = K.$$

where $[K_{i+1}:K_i] = 2$, for each i = 0, ..., m - 1.

(12) 16. Let G be a finite group with |G| = n.
(i) Prove that G is isomorphic to a subgroup of the symmetric group S_n.

(ii) Is G isomorphic to a subgroup of the alternating group A_m for some positive integer m? Justify your answer.

(8) 17. Suppose H and K are normal subgroups of a group G and that $H \cap K = 1$. Prove or disprove that for each $x \in H$ and $y \in K$, we have xy = yx.