Let \mathbb{Z} denote the ring of integers and $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ the fields of rational, real and complex numbers, respectively.
(14) 1 . Let k be a field and let $k(x)$ be the field of rational functions in x with coefficients from k. Let $t \in k(x)$ be the rational function $p(x) / q(x)$, where $p(x), q(x) \in k[x]$ are relatively prime polynomials and $q(x) \neq 0$. Assume that at least one of $p(x)$ and $q(x)$ is a nonconstant polynomial.
(i) Prove that $k(x)$ is algebraic over $k(t)$ and determine $[k(x): k(t)]$.
(ii) Write down the minimal polynomial for x over the field $k(t)$.
(8) 2. Prove that an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ cannot have a multiple root.
(8) 3. Give an example of a field F having characteristic $p>0$ and an irreducible polynomial $f(x) \in F[x]$ that has a multiple root.
(10) 4. Let K / F be an algebraic field extension. Suppose R is a subring of K such that $F \subseteq R$. Prove or disprove that R is a field.
(8) 5. Suppose $\alpha \in \mathbb{C}$ is algebraic over \mathbb{Q}.
(i) Define " α can be expressed by radicals" or the equivalent phrase " α can be solved for in terms of radicals."
(ii) For a polynomial $f(x) \in \mathbb{Q}[x]$, define " $f(x)$ can be solved by radicals."
(14) 6. Let G be the Galois group of an irreducible polynomial $f(x) \in \mathbb{Q}[x]$, where $\operatorname{deg} f=5$.
(i) What integers are possible for the order of G ? Explain your answer.
(ii) If G contains an element of order 3 , what integers are possible for the order of G ? Explain your answer.
(20) 7. Let $\omega \in \mathbb{C}$ be a primitive 12 -th root of unity.
(i) What is $[\mathbb{Q}(\omega): \mathbb{Q}]$?
(ii) List the distinct conjugates of $\omega+\omega^{-1}$ over \mathbb{Q}.
(iii) What is the $\operatorname{group} \operatorname{Aut}\left(\mathbb{Q}\left(\omega+\omega^{-1}\right) / \mathbb{Q}\right)$? Is $\mathbb{Q}\left(\omega+\omega^{-1}\right)$ Galois over \mathbb{Q} ?
(iv) Diagram the lattice of subfields of $\mathbb{Q}(\omega)$ giving generators for each.
(14) 8. Diagram the lattice of ideals of the ring $\mathbb{Z}[x] /\left(15, x^{3}+1\right)$.
(8) 9. Let $f(x) \in \mathbb{Q}[x]$ be a monic polynomial of degree n. Define the discriminant of $f(x)$.
(18) 10. Let p be a prime. Recall that a field extension K / F is called a p-extension if K / F is Galois and $[K: F]$ is a power of p.
(i) Suppose K / F and L / K are p-extensions. Prove that the Galois closure of L / F is a p-extension.
(ii) Give an example where K / F and L / K are p-extensions, but L / F is not Galois.
(16) 11. Let K / F be a finite separable algebraic field extension and let $\alpha \in K$.
(i) Define the norm $N_{K / F}(\alpha)$ of α from K to F.
(ii) Prove that $N_{K / F}(\alpha) \in F$.
(iii) Define the trace $\operatorname{Tr}_{K / F}(\alpha)$ of α from K to F.
(iv) Prove that $\operatorname{Tr}_{K / F}(\alpha) \in F$.
(8) 12. Let \mathbb{F}_{5} denote the field with 5 elements. What is the order of the group $\mathrm{SL}_{2}\left(\mathbb{F}_{5}\right)$ of 2×2 matrices with entries in \mathbb{F}_{5} that have determinant 1 ?
(10) 13. Suppose R is an integral domain in which each prime ideal is a principal ideal. Prove or disprove that every ideal of R is principal.
(10) 14. Let R be a commutative ring with identity $1 \neq 0$ and let $f(x), g(x) \in R[x]$ be polynomials. Let $c(f), c(g)$ denote the ideals of R generated by the coefficients of $f(x), g(x)$, respectively. If $c(f)=c(g)=R$, prove that the ideal $c(f g)$ generated by the coefficients of the product $f(x) g(x)$ is also equal to R.
(14) 15. Suppose L / \mathbb{Q} is a finite algebraic field extension for which there exists a chain

$$
\mathbb{Q}=L_{0} \subset L_{1} \subset \cdots \subset L_{n-1} \subset L_{n}=L
$$

where $\left[L_{i+1}: L_{i}\right]=2$, for each $i=0, \ldots n-1$. If K is a subfield of L, prove or disprove that there exists for some integer $m \leq n$ a chain

$$
\mathbb{Q}=K_{0} \subset K_{1} \subset \cdots \subset K_{m-1} \subset K_{m}=K
$$

where $\left[K_{i+1}: K_{i}\right]=2$, for each $i=0, \ldots, m-1$.
(12) 16. Let G be a finite group with $|G|=n$.
(i) Prove that G is isomorphic to a subgroup of the symmetric group S_{n}.
(ii) Is G isomorphic to a subgroup of the alternating group A_{m} for some positive integer m ? Justify your answer.
(8) 17. Suppose H and K are normal subgroups of a group G and that $H \cap K=1$. Prove or disprove that for each $x \in H$ and $y \in K$, we have $x y=y x$.

