QUALIFYING EXAMINATION
 AUGUST 2000
 MATH 553-K. Matsuki

Write down answers to the following questions with your reasoning. If your reasoning is correct, even when your final answer happens to be wrong, you will get a substantial amount of credit. On the other hand, providing a final answer without any reasoning will not get full credit.

1. Let $G=S_{3}$ be the symmetric group of degree 3, i.e., the group of permutations of 3 distinct numbers.
i) (10 points) What is the total number of subgroups of G (including G itself and the trivial group consisting only of the identity) ?
ii) (15 points) What is the total number of endomorphisms of G (i.e., group homomorphisms from G to G itself) ?
iii) (10 points) What is the total number of automorphisms of G (i.e., bijective endomorphisms of G)?
iv) (15 points) What is the total number of subgroups of D_{30} (the dihedral group of order 30 , which is the group of symmetrics of the regular 15 -gon) which are isomorphic to S_{3} ?
2. Let G be a finite group and p a prime integer.
i) (5 points) Give the definition of H being a Sylow p-subgroup of G.
ii (15 points) Let H be a Sylow p-subgroup of G. Show that $N \cap H$ is a Sylow p-subgroup of N for any normal subgroup N of G.
3. Let $R=\left\{a+b \cdot i ; a, b \in \mathbb{Z}, i^{2}=-1\right\}$ be the ring of Gaussian integers.
i) (15 points) Show that R is a Unique Factorization Domain.
ii) (15 points) Factor the number 70 into prime elements in the ring R. (Verify that each factor in the chosen factorization is a prime element in R.)
4. Let $\zeta=\exp \left(\frac{2 \pi \sqrt{-1}}{5}\right)$ be a primitive 5 -th root of unity.
i) (10 points) Find the minimal polynomial of ζ over the field of rational numbers Q.
ii) (10 points) Determine the Galois group $G(\mathbb{Q}(\zeta) / \mathbb{Q})$ of the extension $\mathbb{Q}(\zeta)$ over Q.
iii) (20 points) Find all the intermediate fields between $\mathbb{Q}(\zeta)$ and \mathbb{Q} together with their generators over \mathbb{Q}.
5. Let $\mathbb{Q}(\sqrt[3]{2}, \omega)$ be an extension of \mathbb{Q}, where $\omega=\exp \left(\frac{2 \pi \sqrt{-1}}{3}\right)$ is a primitive 3rd root of unity.
i) (15 points) Determine the Galois group $G(\mathbb{Q}(\sqrt[3]{2}, \omega) / \mathbb{Q})$ of the extension $\mathbb{Q}(\sqrt[3]{2}, \omega)$ over \mathbb{Q}.
ii) (15 points) Find an element $\gamma \in \mathbb{Q}(\sqrt[3]{2}, \omega)$ such that $\mathbb{Q}(\sqrt[3]{2}, \omega)=\mathbb{Q}(\gamma)$. (Give reasoning why your choice of γ satisfies the required property.)
6. Let $f(X)=X^{4}+1 \in \mathbb{Z}[X]$ be a polynomial over \mathbb{Z}.
i) (15 points) Show that $f(X)$ divides $X^{p^{2}}-X$ for any prime integer $p>2$.
ii) (15 points) Show that $f(X)$, considered as a polynomial in $\mathbb{F}_{p}[X]$ where $\mathbb{F}_{p}=$ $\mathbb{Z} /(p)$ is the finite field with p elements, is reducible for any prime integer $p>2$.
