QUALIFYING EXAMINATION August 1998 MATH 553 - Profs. Avramov/Moh

When answering any part of a problem you may assume the answers to the preceding parts. The number of [points] carried by a correct answer is indicated after each question.

NOTATION: The letter p denotes a prime number.

The symbols \mathbb{Z} , \mathbb{F}_q , \mathbb{Q} , \mathbb{R} , and \mathbb{C} stand for, respectively, the ring of integers, the field with q elements and those of rational, real, and complex numbers.

1. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial, such that p divides f(n) for all $n \in \mathbb{Z}$. Prove that there exist polynomials $g(x), h(x) \in \mathbb{Z}[x]$ such that $f(x) = pg(x) + (x^p - x)h(x)$. [10]

2. Let $f(x) \in F[x]$ be an irreducible polynomial of degree $n \ge 2$ over a field F. Let a and b be roots of f(x) in some extension field K of F.

- (1) Prove that a and b have the same order in the multiplicative group K^* . [5]
- (2) Prove or disprove: This order is finite when $F = \mathbb{Q}$ and [K : F] = 2? [5]
- (3) If the field F is finite, then show that this order is equal to the least integer $s \ge 0$ such that f(x) divides the polynomial $x^s 1$. [10]
- **3.** Let $Z[i] = \{a + bi \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$ be the ring of Gaussian integers.
 - (1) Write down a prime decomposition of 5 + 7i in Z[i]. [5]
 - (2) Prove that the factors in the chosen decomposition are prime elements. [10]
- **4.** Let K be the splitting field of the polynomial $x^5 2$ over $F = \mathbb{Q}$.
 - (1) Find the degree [K:F]. [5]
 - (2) Describe the Galois group G(K|F). [10]
 - (3) Find a primitive element for L over F. [5]
- **5.** Prove that a group G of order 567 has a normal subgroup of order 27. [15]

6. Let G be a group of order 4n + 2. Let G act on itself by left multiplication and let $\iota: G \to S_{4n+2}$ be the corresponding homomorphism to the symmetric group on 4n + 2 elements.

- (1) Prove that if $g \in G$ has order 2, then $\iota(g)$ is an odd permutation. [10]
- (2) Prove that G contains a normal subgroup of order 2n + 1. [10]