QUALIFYING EXAMINATION

August 1998
MATH 553 - Profs. Avramov/Moh

When answering any part of a problem you may assume the answers to the preceding parts. The number of [points] carried by a correct answer is indicated after each question.

Notation: The letter p denotes a prime number.
The symbols $\mathbb{Z}, \mathbb{F}_{q}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} stand for, respectively, the ring of integers, the field with q elements and those of rational, real, and complex numbers.

1. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial, such that p divides $f(n)$ for all $n \in \mathbb{Z}$. Prove that there exist polynomials $g(x), h(x) \in \mathbb{Z}[x]$ such that $f(x)=p g(x)+\left(x^{p}-x\right) h(x)$.
2. Let $f(x) \in F[x]$ be an irreducible polynomial of degree $n \geq 2$ over a field F. Let a and b be roots of $f(x)$ in some extension field K of F.
(1) Prove that a and b have the same order in the multiplicative group K^{*}.
(2) Prove or disprove: This order is finite when $F=\mathbb{Q}$ and $[K: F]=2$?
(3) If the field F is finite, then show that this order is equal to the least integer $s \geq 0$ such that $f(x)$ divides the polynomial $x^{s}-1$.
3. Let $Z[i]=\{a+b i \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$ be the ring of Gaussian integers.
(1) Write down a prime decomposition of $5+7 i$ in $Z[i]$.
(2) Prove that the factors in the chosen decomposition are prime elements.
4. Let K be the splitting field of the polynomial $x^{5}-2$ over $F=\mathbb{Q}$.
(1) Find the degree $[K: F]$.
(2) Describe the Galois group $G(K \mid F)$.
(3) Find a primitive element for L over F.
5. Prove that a group G of order 567 has a normal subgroup of order 27 .
6. Let G be a group of order $4 n+2$. Let G act on itself by left multiplication and let $\iota: G \rightarrow S_{4 n+2}$ be the corresponding homomorphism to the symmetric group on $4 n+2$ elements.
(1) Prove that if $g \in G$ has order 2, then $\iota(g)$ is an odd permutation.
(2) Prove that G contains a normal subgroup of order $2 n+1$.
