Each problem 1-4 is worth 10 points, and $\# 5$ is worth 20 . In working any part of a problem you may assume the preceding parts, even if you haven't done them.

1. Let G be a group of finite order n, and let d be an integer relatively prime to n.
(a) Show that there is an integer a such that every $x \in G$ satisfies $x^{a d}=x$.
(b) Show that for every $y \in G$, there is precisely one $x \in G$ such that $x^{d}=y$.
2. Let p be a prime dividing the order of the finite group G, and let P be a Sylow p-subgroup of G. Let a and $b=z a z^{-1}(z \in G)$ both lie in $Z(P)$, the centralizer of P. Show that $z^{-1} P z \subset Z(a)$; and deduce that $b=y a y^{-1}$ for some y in the normalizer of P.
3. Let i be an element of a commutative ring S such that i is $i d e m p o t e n t$, i.e., $i^{2}=i$.
(a) Prove that the principal ideal $i S$ is a ring, with identity element i.
(b) Let $i^{\prime}=1-i$. Show that i^{\prime} is idempotent, and establish a ring-isomorphism

$$
S \xrightarrow{\sim}(i S) \times\left(i^{\prime} S\right) .
$$

4. (a) Factor 2 into primes in $\mathbb{Z}[\sqrt{-1}]$ and in $\mathbb{Z}[\sqrt{-2}]$. (Justify your answer.)
[An element a in a ring R is defined to be prime if the ideal $a R$ is prime.]
(b) Show for any integer $n>2$ that in $\mathbb{Z}[\sqrt{-n}], 2$ is irreducible but not prime.
(c) For which positive integers n is $\mathbb{Z}[\sqrt{-n}]$ a unique factorization domain? (Answer only-no justification required.)
5. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ where \mathbb{Q} is the field of rational numbers. You may assume that $[L: \mathbb{Q}]=4$.
(a) For rational numbers a, b, c, d with at least two of b, c, d non-zero, prove that

$$
L=\mathbb{Q}(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}) .
$$

(b) Let $\alpha=-(2+\sqrt{2})(2+\sqrt{3})(3+\sqrt{6})$. Show that any \mathbb{Q}-conjugate of α is of the form $\alpha \ell^{2}$ with $\ell \in L$; and deduce that $K:=L(\sqrt{\alpha})$ is a degree 8 galois extension of \mathbb{Q}.
(c) Show that L is the fixed field of any non-identity automorphism θ of K such that $\theta^{2}=$ identity. Hint: Consider $(\sqrt{\alpha})(\theta \sqrt{\alpha})$.
(d) Is the galois group of K / \mathbb{Q} abelian, dihedral, or quaternionic? (Justify your answer.)

