Qualifying Examination

January, 1996
Math 553

In answering any part of a problem you may assume the answers to the preceding parts. The number of [points] carried by a correct answer is indicated after each question.

1. Prove that each group of order 616 is solvable.
2. Let G be a group, which contains two elements x and y which commute and have finite orders m and n, respectively. Prove that G contains an element z of order equal to the least common multiple of m and n.
3. Let p be a prime number, let \mathbb{F}_{p} be the field with p elements, let S_{p} be the ring of all 2×2 matrices with elements in \mathbb{F}_{p}, and set:

$$
F_{p}=\left\{\left.\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right) \in S_{p} \right\rvert\, a \in \mathbb{F}_{p}\right\} ; \quad R_{p}=\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \in S_{p} \right\rvert\, a, b \in \mathbb{F}_{p}\right\}
$$

(a) Prove that $F_{p} \cong \mathbb{F}_{p}$ and that R_{p} is a commutative subring of S_{p}.
(b) Prove that $R_{p}=F_{p}[x]$ for some $x \in S_{p}$.
(c) Prove that R_{p} has non-zero nilpotent elements if and only if $p=2$.
(d) Prove that R_{p} is a field if and only if $p=4 k-1$ for some integer $k \geq 1$.
(e) Describe the group of units U_{p} of R_{p} as a direct product of cyclic groups.
(f) Write down a matrix A_{p} of highest order in U_{p} for $p=2,3,5$.
4. Let R be a UFD with field of fractions F, and let f and g be polynomials in $R[x]$ which have no common root in any field extension of F.
(a) Prove that there exist polynomials $h, k \in R[x]$ and a non-zero element $d \in R$ such that $f h+g k=d$. Is d the greatest common divisor of f and g ? Justify your answer. [5]
(b) When R is the ring of integers \mathbb{Z}, prove that the ideal I generated by $f=x^{2}+4 x+5$ and $g=x^{2}+x+1$ is maximal, and determine the field $F=\mathbb{Z}[x] / I$.
5. Let F be a (not necessarily finite) field extension of the field of rational numbers \mathbb{Q}, and let $\sigma: F \rightarrow F$ be a ring homomorphism.
(a) Prove that if F is algebraic over \mathbb{Q}, then σ is an isomorphism.
(b) Show that the conclusion may fail if F is not assumed algebraic over \mathbb{Q}.
6. Let $\mathbb{Q} \subset F$ be a Galois extension with Galois group the symmetric group S_{4}. List all the numbers that occur as degrees of minimal polynomials over \mathbb{Q} of elements $x \in F$, and justify your answer.

