QUALIFYING EXAMINATION JANUARY 1995 MATH 553

Do any FOUR of the questions (1-5). Begin each one on a new sheet. In answering any part of a question, you may assume the preceding parts.

- 1. \mathbb{Z} denotes the ring of integers.
- [8] (a) Let m and n be relatively prime positive integers. Show that there is a ring isomorphism

$$\mathbb{Z}/mn\mathbb{Z} \xrightarrow{\sim} \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}.$$

[8] (b) Let $\phi(x)$ be the number of positive integers $\leq x$ and relatively prime to x. Prove that if p_1, p_2, \ldots, p_k are distinct positive primes, and e_1, e_2, \ldots, e_k are positive integers (k > 0), then

$$\phi(p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}) = p_1^{e_1-1}(p_1-1)p_2^{e_2-1}(p_2-1)\cdots p_k^{e_k-1}(p_k-1).$$

[9] (c) Let m be a positive integer such that every group of order m is cyclic. Prove that m and $\phi(m)$ are relatively prime.

The converse is also true, but don't try to prove that now.

- 2. Let G be a non-abelian group of order p^3 (p an odd prime), and let C be its center.
- [7] (a) Show that G/C is isomorphic to $\mathbf{Z}_p \times \mathbf{Z}_p$, where \mathbf{Z}_p is a group of order p.
- [6] (b) Prove that the map $f: G \to G$ defined by $f(x) = x^p$ is a group homomorphism. <u>Hint</u>: By (a), for any x, y in G there is a $z \in C$ such that yx = xyz.
- [6] (c) Prove that $f(G) \subset C$, and deduce that G has at least $p^2 1$ elements of order p.
- [6] (d) Prove that G has subgroups H and K of orders p^2 and p respectively, such that $H \cap K = \{e\}$.

- 3. Let R be a commutative integral domain in which any two non-zero elements x, y have a greatest common divisor (gcd), i.e., an element dividing both x and y, and divisible by any other element which divides both x and y. Abusing notation, we write d = (x, y) for any d which is a greatest common divisor of x and y.
- [5] (a) Prove that if d = (x, y), then e = (x, y) if and only if e = ud where u is a unit in R.
- [7] (b) Prove that for all nonzero x, y, z in R,

$$(xy, zy) = (x, z)y.$$

- [7] (c) Prove that if (x, z) = (y, z) = 1 then (xy, z) = 1.
- [6] (d) Prove that any irreducible element in R is prime (i.e., generates a prime ideal). Recall that z is irreducible if z is a nonzero nonunit element such that z = xy implies that either x or y is a unit.
 - 4. \mathbb{F}_n denotes the finite field of cardinality n.
- [8] (a) Prove that the polynomial $X^5 X 1$ has no root in \mathbb{F}_9 .
- [9] (b) Using (a), or otherwise, show that $X^5 X 1$ is irreducible over \mathbb{F}_3 .
- [8] (c) For which values of n is $X^5 X 1$ reducible over \mathbb{F}_{3^n} ? Justify your answer.
 - 5. Let f(X) be an irreducible polynomial of degree 5 with coefficients in the field of rational numbers \mathbb{Q} . Assume that f has at least one non-real root in the complex field \mathbb{C} . Assume further that the discriminant of f is a square in \mathbb{Q} .¹
- [8] (a) Prove that the galois group G of f is either the alternating group \mathbf{A}_5 or the dihedral group \mathbf{D}_5 (of order 10). (You may assume that \mathbf{A}_5 is a simple group.)
- [8] (b) Let r be a root of f, and let K be the field Q[r], so that f factors in K[X] as f = (X − r)g with g of degree 4. Prove that f is solvable by radicals if and only if g is reducible in K[X].
- [9] (c) Does (a) hold if we drop the assumption about a non-real root? <u>Hint</u>: Let ζ be a primitive 25-th root of unity, and consider subfields of $\mathbb{Q}[\zeta]$.

¹ Let y_1, \ldots, y_5 be the roots of f, and set $\delta := \prod_{1 \le i < j \le 5} (y_i - y_j)$. The discriminant of f is

$$\delta^2 = \prod_{i \neq j} (y_i - y_j)$$

You may assume that if θ is any automorphism of the splitting field of f then $\theta(\delta) = \epsilon \delta$ where $\epsilon = \pm 1$ is the sign of the permutation of the y_i induced by θ (i.e., $\epsilon = 1$ if the permutation is even, and -1 if odd).