QUALIFYING EXAMINATION

JANUARY 1995
MATH 553

Do any FOUR of the questions (1-5). Begin each one on a new sheet.
In answering any part of a question, you may assume the preceding parts.

1. \mathbb{Z} denotes the ring of integers.
[8] (a) Let m and n be relatively prime positive integers. Show that there is a ring isomorphism

$$
\mathbb{Z} / m n \mathbb{Z} \xrightarrow{\sim} \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}
$$

[8] (b) Let $\phi(x)$ be the number of positive integers $\leq x$ and relatively prime to x. Prove that if $p_{1}, p_{2}, \ldots, p_{k}$ are distinct positive primes, and $e_{1}, e_{2}, \ldots, e_{k}$ are positive integers $(k>0)$, then

$$
\phi\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right)=p_{1}^{e_{1}-1}\left(p_{1}-1\right) p_{2}^{e_{2}-1}\left(p_{2}-1\right) \cdots p_{k}^{e_{k}-1}\left(p_{k}-1\right)
$$

[9] (c) Let m be a positive integer such that every group of order m is cyclic. Prove that m and $\phi(m)$ are relatively prime.

The converse is also true, but don't try to prove that now.
2. Let G be a non-abelian group of order p^{3} (p an odd prime), and let C be its center.
[7] (a) Show that G / C is isomorphic to $\mathbf{Z}_{p} \times \mathbf{Z}_{p}$, where \mathbf{Z}_{p} is a group of order p.
[6] (b) Prove that the map $f: G \rightarrow G$ defined by $f(x)=x^{p}$ is a group homomorphism. Hint: By (a), for any x, y in G there is a $z \in C$ such that $y x=x y z$.
[6] (c) Prove that $f(G) \subset C$, and deduce that G has at least $p^{2}-1$ elements of order p.
[6] (d) Prove that G has subgroups H and K of orders p^{2} and p respectively, such that $H \cap K=\{e\}$.
3. Let R be a commutative integral domain in which any two non-zero elements x, y have a greatest common divisor (gcd), i.e., an element dividing both x and y, and divisible by any other element which divides both x and y. Abusing notation, we write $d=(x, y)$ for any d which is a greatest common divisor of x and y.
[5] (a) Prove that if $d=(x, y)$, then $e=(x, y)$ if and only if $e=u d$ where u is a unit in R.
[7] (b) Prove that for all nonzero x, y, z in R,

$$
(x y, z y)=(x, z) y
$$

[7] (c) Prove that if $(x, z)=(y, z)=1$ then $(x y, z)=1$.
[6] (d) Prove that any irreducible element in R is prime (i.e., generates a prime ideal). Recall that z is irreducible if z is a nonzero nonunit element such that $z=x y$ implies that either x or y is a unit.
4. \mathbb{F}_{n} denotes the finite field of cardinality n.
[8] (a) Prove that the polynomial $X^{5}-X-1$ has no root in \mathbb{F}_{9}.
[9] (b) Using (a), or otherwise, show that $X^{5}-X-1$ is irreducible over \mathbb{F}_{3}.
[8] (c) For which values of n is $X^{5}-X-1$ reducible over $\mathbb{F}_{3^{n}}$? Justify your answer.
5. Let $f(X)$ be an irreducible polynomial of degree 5 with coefficents in the field of rational numbers \mathbb{Q}. Assume that f has at least one non-real root in the complex field \mathbb{C}. Assume further that the discriminant of f is a square in $\mathbb{Q} .{ }^{1}$
[8] (a) Prove that the galois group G of f is either the alternating group \mathbf{A}_{5} or the dihedral group \mathbf{D}_{5} (of order 10). (You may assume that \mathbf{A}_{5} is a simple group.)
[8] (b) Let r be a root of f, and let K be the field $\mathbb{Q}[r]$, so that f factors in $K[X]$ as $f=(X-r) g$ with g of degree 4. Prove that f is solvable by radicals if and only if g is reducible in $K[X]$.
[9] (c) Does (a) hold if we drop the assumption about a non-real root?
Hint: Let ζ be a primitive 25 -th root of unity, and consider subfields of $\mathbb{Q}[\zeta]$.

$$
\begin{aligned}
& { }^{1} \text { Let } y_{1}, \ldots, y_{5} \text { be the roots of } f \text {, and set } \delta:=\prod_{1 \leq i<j \leq 5}\left(y_{i}-y_{j}\right) \text {. The discriminant of } f \text { is } \\
& \qquad \delta^{2}=\prod_{i \neq j}\left(y_{i}-y_{j}\right) .
\end{aligned}
$$

You may assume that if θ is any automorphism of the splitting field of f then $\theta(\delta)=\epsilon \delta$ where $\epsilon= \pm 1$ is the sign of the permutation of the y_{i} induced by θ (i.e., $\epsilon=1$ if the permutation is even, and -1 if odd).

