Qualifying Examination

August, 1995
Math 553

A CORRECT ANSWER TO EACH Part of EACH PROBLEM BELOW IS WORTH 10 POINTS*. In answering any part of a question you may assume the preceding parts.

Notation: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, and \mathbb{F}_{p} denote, respectively, the fields of rational numbers, real numbers, complex numbers, and with p elements.

1. Let p and q be distinct prime numbers. Prove that every group of order $p^{2} q$ is solvable.
2. Let S_{4} be the symmetric group on 4 elements, and let B be the group of permutations of the set $S=\left\{P_{1}, \ldots, P_{s}\right\}$ of Sylow 3 -subgroups of S_{4}.
(a) List the subgroups P_{1}, \ldots, P_{s} and justify your answer.
(b) Prove that the map $S_{4} \rightarrow B$, which sends each $g \in S_{4}$ to the permutation $\left(\begin{array}{cccc}P_{1} & P_{2} & \cdots & P_{s} \\ g\left(P_{1}\right) g^{-1} & g\left(P_{2}\right) g^{-1} & \cdots & g\left(P_{s}\right) g^{-1}\end{array}\right) \in B$, is an isomorphism of groups.
3. Determine which polynomials are irreducible in the given ring:
(a) $f(x)=x^{4}+x^{3}+3 x^{2}+2 \in \mathbb{Q}[x]$.
(b) $f(x, y)=1+x+y^{2}+x y^{2}+y x^{2} \in \mathbb{Q}[x, y]$.
4. Prove the following assertions for the ring $S=\mathbb{R}[x] /\left(\left(x^{2}+1\right)^{2}\right)$.
(a) There exist exactly two ring homomorphisms $\pi: S \rightarrow \mathbb{C}$ such that $\left.\pi\right|_{\mathbb{R}}=\operatorname{id}_{\mathbb{R}}$.
(b) Choose one of the homomorphisms in (a), and call it π. Prove that there exists a unique homomorphism of rings $\sigma: \mathbb{C} \rightarrow S$ such that $\left.\sigma\right|_{\mathbb{R}}=\mathrm{id}_{\mathbb{R}}$ and $\pi \sigma=\mathrm{id}_{\mathbb{C}}$.
[Hint: Prove and use the following: if such a σ exists, then $(\sigma(i))^{2}=-1$ and $\pi \sigma(i)=\pi(x)$.]
(c) The homomorphism σ extends to an isomorphism of rings $\mathbb{R}[y] /\left(y^{2}\right) \rightarrow S$.
5. Let p be a prime number, let L be the field of rational functions $\mathbb{F}_{p}(x, y)$, and let F be the subfield $\mathbb{F}_{p}\left(x^{p}, y^{p}\right) \subseteq L$. For each integer $n \geq 1$ consider the element $z_{n}=x+y x^{p^{n}} \in L$ and the subfield $E_{n}=F\left(z_{n}\right) \subseteq L$. Prove the following assertions.
(a) $(L: F)=p^{2}$ and $\left(E_{n}: F\right)=p$.
(b) $E_{n} \neq E_{m}$ if $n \neq m$.
6. Let $K=\mathbb{Q}(\sqrt{5}, \sqrt{6}, \sqrt{7})$. Prove the following assertions.
(a) $(K: \mathbb{Q})=8$.

[^0](b) K is a Galois extension of \mathbb{Q} and $\operatorname{Gal}(K \mid \mathbb{Q}) \cong C_{2} \times C_{2} \times C_{2}$, where C_{2} is the cyclic group of order 2 .

[^0]: * Only the first 100 points you collect will count towards your score.

