Qualifying Exam for Math 553, 1994

1) (10 points) Prove or disprove: The multiplicative group of 2×2 matrices with integer coefficients and determinant 1 is generated by matrices of the following two forms,

$$
\text { 1) }\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)
$$

and

$$
\text { 2) } \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

[Hint: Every square matrix can be diagonalized by elementary operations.]
2) (10 points) Let \mathbf{G} be the symmetric group of a square (a dihedral group). Let v be a vertex, and $\mathbf{H}=\operatorname{Stab}(v)(=$ the stablizer of $v)$. Find orders $o(\mathbf{G}), o(\mathbf{H})$ and $[\mathbf{G}: \mathbf{H}]$.
3) (10 points) Let p be a prime number. Prove or disprove that the center of a group of order p^{3} can not be of order p^{2}.
4) (10 points) Prove or disprove that a group of order 77 must be cyclic.
5) (10 points) Find the prime factorization of $6+8 i$ in the ring of Gaussian integers $\mathbf{Z}[i]$.
6) (10 points) (a) Prove that if $f(x)=x^{p}-x+a \in Z_{p}[x]$ where $Z_{p}=Z / p Z$ with p a prime number, then $f(x)$ is irreducible if and only if $a \neq 0$. [Hint: the above equation is invariant under the automorphisms $\mathrm{x} \mapsto \mathrm{x}+\mathrm{b}$ for $\mathrm{b}=0,1,2, \cdots, p-1$.]
(10 points) (b) Prove or disprove that $x^{101}+101 x^{99}+202 x^{30}-102 x+25$ is irreducible in $\mathbf{Q}[x]$ where \mathbf{Q} is the field of rational numbers.
7) (10 points) Let \mathbf{R} be a finite field of characteristic p. Prove or disprove that every element in \mathbf{R} has a p-th root.
8) (10 points) Let \mathbf{Q} be the field of all rationals. Let \mathbf{L} be a splitting field of the polynomial $x^{9}+x^{6}+x^{3}+1$. Find the Galois group of \mathbf{L} over \mathbf{Q}.
9) (10 points) Let α be a root of the following equation over the field, \mathbf{Q}, of all rationals,

$$
x^{3}+x^{2}-2 x-1=0
$$

Prove that $\mathbf{Q}[\alpha]$ is a Galois extension of \mathbf{Q} and find the Galois $\operatorname{group} \operatorname{Gal}(\mathbf{Q}[\alpha] / \mathbf{Q})$.
[Hint: $x^{3}+x^{2}-2 x-1=(x-\alpha)\left(x^{2}+(\alpha+1) x+1 / \alpha\right)=(x-\alpha)\left(x^{2}+(\alpha+1) x+\left(\alpha^{2}+\alpha-2\right)\right)$, and $-3 \alpha^{2}-2 \alpha+9=\left(2 \alpha^{2}+\alpha-3\right)^{2}$.]

