Qualifying Exam for Math 553, 1994

1) (10 points) Prove or disprove: The multiplicative group of $2 \ge 2$ matrices with integer coefficients and determinant 1 is generated by matrices of the following two forms,

1)
$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$

and

$$2) \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

[Hint: Every square matrix can be diagonalized by elementary operations.]

2) (10 points) Let **G** be the symmetric group of a square (a dihedral group). Let v be a vertex, and $\mathbf{H} = \operatorname{Stab}(v)$ (= the stablizer of v). Find orders $o(\mathbf{G})$, $o(\mathbf{H})$ and $[\mathbf{G}:\mathbf{H}]$.

3) (10 points) Let p be a prime number. Prove or disprove that the center of a group of order p^3 can not be of order p^2 .

4) (10 points) Prove or disprove that a group of order 77 must be cyclic.

5) (10 points) Find the prime factorization of 6 + 8i in the ring of Gaussian integers $\mathbf{Z}[i]$.

6) (10 points) (a) Prove that if $f(x) = x^p - x + a \in Z_p[x]$ where $Z_p = Z/pZ$ with p a prime number, then f(x) is irreducible if and only if $a \neq 0$. [Hint: the above equation is invariant under the automorphisms $x \mapsto x+b$ for $b=0, 1, 2, \dots, p-1$.]

(10 points) (b) Prove or disprove that $x^{101}+101x^{99}+202x^{30}-102x+25$ is irreducible in $\mathbf{Q}[x]$ where \mathbf{Q} is the field of rational numbers.

7) (10 points) Let \mathbf{R} be a finite field of characteristic p. Prove or disprove that every element in \mathbf{R} has a p-th root.

8) (10 points) Let \mathbf{Q} be the field of all rationals. Let \mathbf{L} be a splitting field of the polynomial $x^9 + x^6 + x^3 + 1$. Find the Galois group of \mathbf{L} over \mathbf{Q} .

9) (10 points) Let α be a root of the following equation over the field, **Q**, of all rationals,

$$x^3 + x^2 - 2x - 1 = 0$$

Prove that $\mathbf{Q}[\alpha]$ is a Galois extension of \mathbf{Q} and find the Galois group $\operatorname{Gal}(\mathbf{Q}[\alpha]/\mathbf{Q})$. [Hint: $x^3 + x^2 - 2x - 1 = (x - \alpha)(x^2 + (\alpha + 1)x + 1/\alpha) = (x - \alpha)(x^2 + (\alpha + 1)x + (\alpha^2 + \alpha - 2))$, and $-3\alpha^2 - 2\alpha + 9 = (2\alpha^2 + \alpha - 3)^2$.]