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1. (a) Show that if f : R → R is continuous almost everywhere, then f is measurable.



(b) Describe a sequence of functions fn : [0, 1] → R so that

lim
n→∞

∫ 1

0

fn dλ = 0

but fn does not converge for any x ∈ [0, 1].



(c) Show that for your example, we can find a subsequence {fnk
} so that

lim
k→∞

∫ 1

0

|fnk
| dλ = 0.



2. Let E ⊆ [0, 2] be a measurable subset and define f(x) = λ(E ∩ (−∞, x]). Show that f
is absolutely continuous. Compute f ′ and

∫ 1

−1
f ′ dλ.



3. Let fn ∈ L1(X,S, µ) be a Cauchy sequence. Show that for all ε > 0, there exists δ > 0
so that for all n ∈ N, we have that if E ∈ S satisfies µ(E) < δ, then∫

E

|fn| dµ < ε.

Hint: you may use that if f ∈ L1, then for all ε > 0, there exists δ > 0 so that if
µ(E) < δ, then

∫
E
|f | dµ < ε.



4. Let (X,S, µ) be a finite measure space, 1 ≤ p1 < p2 ≤ ∞ and let T : Lp2 → Lp1 be the
inclusion map. Show that T is a bounded linear map. What is ∥T∥?



5. Let p ∈ [1,∞). A sequence {a(n)} is called finitely supported if there exists some N
so that a(n) = 0 for all n > N .

(a) Show that if a = {a(n)} is finitely supported, then a ∈ ℓp.

(b) Show that finitely supported sequences are dense in ℓp.



(c) Show that all finitely supported sequences are elements of ℓ∞, but finitely sup-
ported sequences are NOT dense in ℓ∞.



6. Let (X,S, µ) be a σ-finite measure space, f : X → R be a non-negative measurable
function, and

Gf := {(x, y) : y ≤ f(x)} ⊆ X × [0,∞]

(a) Show
∫
X
f dµ = (µ× λ)(Gf ).



(b) Show
∫
X
f dµ =

∫∞
0

µ {x ∈ X : y ≤ f(x)} dλ(y)


