1. (18 points) Let X be a nonempty set, \mathcal{A} a σ-algebra on X, and $\mu_{n}: \mathcal{A} \rightarrow[0, \infty], n=1,2, \ldots$, a sequence of positive measures on \mathcal{A} such that the limit $\mu(E)=\lim _{n \rightarrow \infty} \mu_{n}(E)$ exists for any $E \in \mathcal{A}$.
(a) Prove that if $\left\{\mu_{n}\right\}$ is increasing, i.e., $\mu_{n+1}(E) \geq \mu_{n}(E)$ for any $E \in \mathcal{A}$ and $n \in \mathbb{N}$, then μ is a measure on \mathcal{A}.
(b) Show by an example that if $\left\{\mu_{n}\right\}$ is decreasing, i.e., $\mu_{n+1}(E) \leq \mu_{n}(E)$ for any $E \in \mathcal{A}$ and $n \in \mathbb{N}$, then μ is not necessarily a measure on \mathcal{A}.
2. (18 points) Let (X, \mathcal{M}, μ) be a σ-finite measure space, $A \in \mathcal{M}$ with $0<\alpha \leq \mu(A)<\infty$, and $f: A \rightarrow \mathbb{R}$ a strictly positive function, integrable on A.
(a) Prove that

$$
\inf _{B} \int_{B} f d \mu>0
$$

where the infimum is taken over all measurable subsets $B \subset A$ with $\mu(B) \geq \alpha$.
(b) Show by an example that the statement of part (a) may fail if $\mu(A)=\infty$.
3. (18 points) Let $f \in L_{\mathrm{loc}}^{1}(\mathbb{R})$. For a given number $\tau>0$, we say that f is τ-periodic if

$$
f(x+\tau)=f(x) \quad \text { for a.e. } x \in \mathbb{R}
$$

Prove that if there is a sequence of positive numbers $\left\{\tau_{n}\right\}$, such that f is τ_{n}-periodic for every $n=1,2, \ldots$, and $\tau_{n} \rightarrow 0$ as $n \rightarrow \infty$, then there is constant $c \in \mathbb{R}$ such that $f(x)=c$ for a.e. $x \in \mathbb{R}$.
[Note: You may use without proof that the integrals of a τ-periodic function are constant over any interval of length τ.]
4. (18 points) Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)<\infty, p>1$, and $\left\{f_{n}\right\}_{n=1}^{\infty}$ a uniformly bounded sequence in $L^{p}(X, \mu)$, i.e., $\sup _{n}\left\|f_{n}\right\|_{L^{p}(X, \mu)}<\infty$. Prove that if f_{n} converges in measure to a function f on X, i.e.,

$$
\lim _{n \rightarrow \infty} \mu\left\{\left|f_{n}-f\right| \geq \epsilon\right\}=0, \quad \text { for any } \epsilon>0
$$

then it converges to f in $L^{r}(X, \mu)$-norm for any $1 \leq r<p$, i.e.,

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{r}(X, \mu)}=0
$$

5. (28 points) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function, with m and M its minimal and maximal values on $[a, b]$, respectively. For $y \in[m, M]$, let $N(y)$ be the number of roots of the equation $f(x)=y, x \in[a, b]$, if that number is finite, and $N(y)=\infty$ if that number is infinite. (The function N is called the Banach indicatrix of f.)
Prove the following:
(a) The function N is Lebesgue measurable on $[m, M]$.
(b) The function N is Lebesgue integrable on $[m, M]$ if and only if f has a bounded variation on $[a, b]$. Moreover,

$$
\int_{m}^{M} N(y) d y=T_{f}([a, b])
$$

(Here $T_{f}([a, b])$ denotes the total variation of the function f on $[a, b]$.)
[Hint: For $k \in \mathbb{N}$, let $I_{1}^{(k)}=\left[a, a+\frac{(b-a)}{2^{k}}\right]$, and $I_{j}^{(k)}=\left(a+(j-1) \frac{(b-a)}{2^{k}}, a+j \frac{(b-a)}{2^{k}}\right], j=2,3, \ldots, 2^{k}$. For $y \in[m, M]$, define

$$
L_{j}^{(k)}(y)=\chi_{f\left(I_{j}^{(k)}\right)}(y)= \begin{cases}1, & \text { if } y \in f\left(I_{j}^{(k)}\right) \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
N^{(k)}(y)=L_{1}^{(k)}(y)+L_{2}^{(k)}(y)+\cdots+L_{2^{k}}^{(k)}(y)
$$

Prove that $\left\{N^{(k)}(y)\right\}_{k=1}^{\infty}$ is a monotone sequence of functions, converging to $N(y)$ pointwise on $\left.[m, M].\right]$ [Note: You may use without proof that the image of an interval under a continuous function is an interval.]

