MA 544 Qualifying Exam

Name:_____

- a) Legibly print your name above.
- b) Do not open this test booklet until you are directed to do so.
- c) You will have 120 min. to complete the exam. Budget your time wisely!
- d) This test is closed book and closed notes. You may not use a calculator during this test.
- e) Throughout the test, show your work so that your reasoning is clear.
- f) If you need extra room, use the back of the pages. Just make sure I can follow your work.

Problem	Points	Grade
1	20	
2	10	
3	20	
4	20	
5	15	
6	15	
Total	100	

1 (20 pts). Suppose that μ is a finite Borel measure on $[0, \infty)$. Prove that $\int e^{\alpha x} d\mu(x) < \infty$ for some $\alpha > 0$ if and only if there exist c, C > 0 such that $\mu([t, \infty)) \leq Ce^{-ct}$ for all t > 0.

2 (10 pts). Let $\{f_k\}_{k\geq 1}$ and f be Lebesgue measurable functions on \mathbb{R}^n such that $f_k \xrightarrow{m} f$ (note that \xrightarrow{m} denotes convergence in measure). Prove that if the functions $\{f_k\}_k$ are uniformly bounded (that is $|f_k(x)| \leq M < \infty$ for all $x \in \mathbb{R}^n$ and $k \geq 1$) then $\phi(f_k) \xrightarrow{m} \phi(f)$ for every continuous function $\phi : \mathbb{R} \to \mathbb{R}$.

3 (20 pts). Compute the following limit

$$\lim_{n \to \infty} \sum_{k=0}^{\lfloor rn \rfloor} \left(1 - \frac{k}{n} \right)^n$$

for any 0 < r < 2. Make sure to fully justify all of your calculations. Hint: it may be helpful to first consider the case $0 < r \le 1$.

4 (20 pts). Let p, q > 1 be such that $\frac{1}{p} + \frac{1}{q} = 1$. Prove that if $f \in L^p(\mathbb{R})$ and $g \in L^q(\mathbb{R})$, then

$$\lim_{|x|\to\infty} (f*g)(x) = \lim_{|x|\to\infty} \int_{\mathbb{R}} f(x-y)g(y)\,dy = 0.$$

Hint: divide the integral for (f * g)(x) into two parts and analyze each part separately.

5 (15 pts). For any absolutely continuous function f on [0, 1], let

$$J(f) = \int_0^1 f'(x)^2 \, dx.$$

Let \mathcal{A} be the set of absolutely continuous functions, and for any t > 0 let

$$\mathcal{A}_t = \left\{ f \in \mathcal{A} : f(0) = 0 \text{ and } \sup_{x \in [0,1]} f(x) \ge t \right\}.$$

Prove that

$$\inf_{f \in \mathcal{A}_t} J(f) = t^2.$$

Hint: first prove that $J(f) \ge t^2$ *for all* $f \in \mathcal{A}_t$.

6 (15 pts). Compute

$$\lim_{n \to \infty} \iint_{(0,\infty)^2} \frac{n}{x} \sin\left(\frac{x}{ny}\right) e^{-\frac{x}{y} - y} \left(dx \, dy\right).$$

Make sure to fully justify your computations.