
REAL ANALYSIS

QUALIFYING EXAM

JANUARY 2018

Observation. You have 2 hours to complete this exam. Books,
notebooks, and any other course materials are NOT allowed. Cell
phones must be turned off. No computers or calculators are ac-
cepted. Each problem should be solved on a distinct (new) page
(if you need more space ask for supplementary paper).
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Ex.1 (20 points) Let T be the standard one dimensional torus (unit circle)
given by

T :=

{
e2πix

∣∣x ∈ [−1

2
,
1

2
]

}
.

We consider on T the standard Lebesgue measure m via the natural iden-
tification of T with the unit interval centered at the origin. Further, given
E ⊆ T Lebsesgue measurable and t ∈ [−1

2 ,
1
2 ] we denote with Et the t-

translate of E, that is

Et := {e2πi(x+t) | e2πix ∈ E} .
Prove the following:

a) If E, F ⊆ T Lebesgue measurable then there exists a translate Ft such
that

m(E ∩ Ft) = m(E)m(F ) .

Hint: Express m(E ∩ Ft) in an integral form and then study the properties
of the function t → m(E ∩ Ft).

b) If E ⊆ T Lebesgue measurable with m(E) > 0 then there exist n
translates of E whose union has measure exceeding 1

2 provided n > ln 2
m(E) .

Hint: If E :=
⋃n
j=1Etj and Ftj := (Etj )

c apply successively a) for the set⋂n
j=1 Ftj .

Present in great detail all your reasonings.
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Solution Ex.1 (continuation)
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Ex.2 (25 points) i) Construct a sequence of continuous functions {fn}n∈N
with fn : [0, 1] → [0, 1] such that

(1) lim
n→∞

∫ 1

0
fn(x) dx = 0 ,

but such that the sequence {fn(x)}n converges for no x ∈ [0, 1].
Deduce thus that convergence in norm does not imply a.e. pointwise

convergence.

ii) Show that in the setting described by i) one can always extract a
subsequence {fnk

}k which converges (Lebesgue) almost everywhere at f ≡ 0.

iii) How about the following partial reverse implication: is it true that if
{fn}n∈N is a sequence of continuous functions with fn : [0, 1] → [0, 1] and
such that

∃ lim
n→∞

fn(x) = 0 a.e. x ∈ [0, 1] ,

then (1) must hold? Justify your answer.

Present in great detail all your reasonings.
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Solution Ex.2 (continuation)
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Ex.3 (25 points) Let {Kn}n∈N be a family of functions in1 L1(T) that
forms a family of good kernels. More precisely, that means that all of the
following properties are satisfied:

(2)

•
∫
[− 1

2
, 1
2
]Kn(x) dx = 1 uniformly in n ∈ N.

• there exits M > 0 such that
∫
[− 1

2
, 1
2
] |Kn(x)| dx ≤M for any n ∈ N.

• for every η ∈ (0, 12) one has

lim
n→∞

∫
η<|x|≤ 1

2

|Kn(x)| dx = 0 .

i) Prove that if {Kn}n∈N is a family of good kernels then for any g ∈ C(T)
one has2

(3) ∃ lim
n→∞

‖g − g ∗Kn‖C(T) = 0 .

ii) Let3 {Dn}n∈N be a family of functions with the general term given by

(4) Dn(x) :=
n∑

j=−n
e2πijx .

Prove that the Dirichlet kernel Dn can be re-written as

Dn(x) :=
sin((2n+ 1)π x)

sin(πx)
,

and further deduce that {Dn}n∈N is not a family of good kernels.

iii) Let {Kn}n∈N∗ be a family of functions with the general term given by

(5) Kn(x) :=
D0(x) + . . .+Dn−1(x)

n
.

The Fejer kernel Kn can be re-written as4

(6) Kn(x) :=
1

n

sin2(nπ x)

sin2(πx)
.

Prove that {Kn}n∈N∗ is a family of good kernels.

Present in great detail all your reasonings.

1Recall the definition of the torus T and its identification with the interval [− 1
2
, 1
2
]. The

class L1(T) here stands for the set of 1−periodic functions f : R→ C which are Lebesque
measurable on [− 1

2
, 1
2
] and which obey the condition

∫
[− 1

2
, 1
2
]
|f(x)| dx <∞.

2Here the class C(T) designates the class of continuous (periodic) functions on the torus
endowed with the standard norm ‖g‖C(T) := supx∈T |g(x)|.

3Throughout this exam we use the convention that the set of natural numbers N :=
{0, 1, . . .} while N∗ := N \ {0}.

4You do not need to prove formula (6). However you are invited to use both (5) and
(6) in approaching point iii).
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Solution Ex.3 (continuation)
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Ex.4 (30 points) 1) Let f ∈ L1(T). Assume that the following relation
holds:

(7)

∫
T
f(x) g(x) dx = 0 for any g ∈ C(T) .

Prove that f = 0 a.e. x ∈ T.

2) Prove the following much deeper and stronger5 version of 1) above:
assume that one has

(8) f̂(n) :=

∫
T
f(x) e−2πinx dx = 0 for any n ∈ Z .

Then f = 0 a.e. x ∈ T.
In order to prove this fact one is invited to complete the following steps:

Step 1. If u, v ∈ L1(T) then û ∗ v(n) = û(n) v̂(n) for any n ∈ Z.

Step 2. If Kn, n ∈ N∗ stands for the Fejer kernel defined in the previous
exercise, see (5), show that that the sequence of Cesaro partial sums attached
to an arbitrary g ∈ C(T) and defined by

σn(g)(x) := (g ∗Kn)(x) for n ∈ N∗ ,

verifies

(9) σn(g)(x) =
∑
|j|≤n

(1− |j|
n

) ĝ(j) e2πijx ,

and hence

(10)

∫
T
f(x)σn(g)(x) dx = 0 for any n ∈ N∗ and g ∈ C(T) .

Step 3. Using ex. 3 i) and iii) and (10) deduce that f = 0 a.e. x ∈ T.

3) Assume that we are given f ∈ C(T) and C = C(f) > 0 depending only
on f such that

(11) |f̂(n)| ≤ C

1 + |n|
5
2

∀ n ∈ Z .

Show that the expression

hN (x) :=
∑
|n|≤N

f̂(n) e2πinx ,

converges uniformly (as N → ∞) to an absolutely continuous function h on
[0, 1] and show that h = f . Deduce that f is differentiable almost everywhere

with f ′ ∈ L1(T) and prove that f̂ ′(n) = 2πinf̂(n).

Present in great detail all your reasonings.

5This is often referred as the uniqueness of Fourier expansion.
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Solution Ex.4 (continuation)


