MA 54400 QUALIFIER, 1/4/2016

Each problem is worth 5 points. Make sure that you justify your answers. In problems 4 and 5 a measure space $(\Omega, \mathcal{A}, \mu)$ is given.

Notes, books, crib sheets, and electronic devices are not allowed. You need not copy down the formulation of the problems.

1. Given a bounded function $f : \mathbb{R} \to \mathbb{R}$, let

$$g(x) = \limsup_{y \to x} f(y) \ \Big(= \lim_{r \to 0^+} \sup\{f(y) \ : \ 0 < |x - y| < r\} \ \Big).$$

Prove that g is upper semicontinuous.

2. A subset $X \subset \mathbb{R}$ is called an F_{σ} -set if it can be written as the union of countably many closed subsets of \mathbb{R} . If $h : \mathbb{R} \to \mathbb{R}$ is continuous, and $X \subset \mathbb{R}$ is F_{σ} , prove that h(X) is also F_{σ} .

3. Consider a function $\phi : \mathbb{R} \to \mathbb{R}$ with the property that whenever a sequence $f_n : \mathbb{R} \to \mathbb{R}, n = 1, 2, \ldots$ converges uniformly, so does the sequence $\phi \circ f_n$. Show that this property is equivalent to ϕ being uniformly continuous.

4. Suppose $\mu(\Omega) < \infty$, and $F : \Omega \to \mathbb{R}$ is bounded and measurable. Prove that

$$\int_{\Omega} F \ d\mu = \sup \big\{ \int_{\Omega} G \ d\mu \ : \ G \le F \text{ is simple} \big\}.$$

5. Let $1 \leq a < b < \infty$ and $\psi \in L^{a}(\Omega, \mathcal{A}, \mu) \cap L^{b}(\Omega, \mathcal{A}, \mu)$. Denoting L^{p} -norm by $|| \cdot ||_{p}$, prove that the function

$$[a,b] \ni p \mapsto ||\psi||_p \in \mathbb{R}$$

is continuous.

6. Consider functions $u, v : [a, b] \to \mathbb{R}$, u continuous, v absolutely continuous. Suppose that at almost every $x \in [a, b]$ the derivative of v exists and equals u(x). Prove that then v must be differentiable everywhere, and v' = u on all of [a, b].

7. Let $f : [a, b] \to \mathbb{R}$ be absolutely continuous and suppose $E \subset [a, b]$ has measure 0. Prove that f(E) also has measure 0.

Typeset by \mathcal{AMS} -T_EX