MA 54400-Qualifying Exam

August 8, 2016
Prof. Donatella Danielli

Problem	Score	Max. pts.
$\mathbf{1}$		20
$\mathbf{2}$		25
$\mathbf{3}$		25
$\mathbf{4}$		30
Total		100

In order to receive full credit, you need to show your work and justify your arguments.

2

1. Recall that the distance between two disjoint, nonempty sets $S, T \subset \mathbb{R}$ is defined as

$$
d(S, T)=\inf \{|s-t| \mid s \in S, t \in T\} .
$$

Assume that $d(S, T)>0$. Show that $|S \cup T|_{e}=|S|_{e}+|T|_{e}$. (Here $|E|_{e}$ denotes the outer Lebesgue measure of the set E).
2. Prove that, if $0<\varepsilon<1$, there is no measurable set $E \subset \mathbb{R}$ such that

$$
\varepsilon<\frac{|E \cap I|}{|I|}<1-\varepsilon
$$

for every interval $I \subset \mathbb{R}$.
3. Suppose that $p>0, E \subset \mathbb{R}$ with $|E|<\infty$, and that f is a measurable function on E. Show that if

$$
\left|\left\{x \in E|\mid f(x)>t\} \mid=O\left(t^{-p}\right) \quad \text { as } t \rightarrow+\infty\right.\right.
$$

then $f \in L^{p-\varepsilon}(E)$ for any $\varepsilon \in(0, p)$.
(Hint: Recall that $g(t)=O(h(t))$ as $t \rightarrow+\infty$ iff there exist a positive real number L and a real number t_{0} such that $|g(t)| \leq L|h(t)|$ for all $t \geq t_{0}$. Use the distribution function to compute the integral in question.)
4. Let $\left\{f_{n}\right\}$ be a sequence of functions in $L^{2}(\mathbb{R})$, and let $f \in L^{2}(\mathbb{R})$. Assume that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} g d x=\int_{\mathbb{R}} f g d x
$$

for all $g \in L^{2}(\mathbb{R})$.

1. Show that

$$
\|f\|_{L^{2}(\mathbb{R})} \leq \liminf _{n \rightarrow \infty}\left\|f_{n}\right\|_{L^{2}(\mathbb{R})} .
$$

2. Suppose, in addition, that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}^{2} d x=\int_{\mathbb{R}} f^{2} d x
$$

Prove that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{2}(\mathbb{R})}=0$.
3. (Extra credit: 15 points) Give an example where the inequality in Part 1. is strict, with the right-hand side being finite.

