Real Analysis Qualifying Exam, January 2014

Name:

Student Number:

1. (20 pts.) Given $f \in L^{p}(\mathbb{R})$ and $g \in L^{q}(\mathbb{R})$ with $p, q>1$ and $1 / p+1 / q=1$, consider the convolution

$$
f * g(y)=\int_{\mathbb{R}} f(x-y) g(y) d y
$$

Prove that $f * g$ is well-defined, continuous, and bounded. Also prove that $\lim _{|x| \rightarrow \infty} f * g(x)=0$.
2. (20 pts.) Let ϕ be a bounded linear functional on $L^{2}(\mathbb{R})$. Prove directly from the definition that $F(x)=\phi\left(\chi_{[0, x]}\right)$ is absolutely continuous, where $\chi_{[0, x]}$ is the characteristic function of $[0, x]$. Use the Riesz Representation Theorem to find a formula for the derivative of $F(x)$ almost everywhere.
3. (20 pts.) Suppose that $1<p<\infty$. We say that a sequence $\left(f_{n}\right)$ in $L^{p}([0,1])$ converges weakly to $f \in L^{p}([0,1])$ if $\phi\left(f_{n}\right) \rightarrow \phi(f)$ for every bounded linear functional ϕ on $L^{p}([0,1])$. Assume that $\left\|f_{n}\right\| \leq 1$ and that $f_{n} \rightarrow 0$ almost everywhere. Prove that f_{n} converges weakly to 0 . (Hint: use Egorov's Theorem.)
4. (20 pts.) Suppose that $A, B \subseteq[0,1]$ are measurable sets each of Lebesgue measure at least $1 / 2$.

Prove that there exists an $x \in[-1,1]$ such that the measure of $(A+x) \cap B$ is at least $1 / 10$.
5. (20 pts.) Suppose that $p>4 / 3$ and that $f \in L^{p}(\mathbb{R})$. Prove that

$$
\lim _{t \rightarrow 0^{+}} \int_{0}^{t} x^{-1 / 4} f(x) d x=0
$$

6. (20 pts.) Suppose that X is a normed vector space. Show that X is complete if and only if every absolutely convergent series converges in norm. ($\sum x_{n}$ is absolutely convergent if $\sum\left\|x_{n}\right\|<\infty$.)
