Name:

- 1. (15 points) Let (X, \mathcal{M}, μ) be a measure space and let $f, f_1, f_2, ...$ be non-negative integrable functions such that $f_n \to f$ a.e. and $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu$. If $E \in \mathcal{M}$, then show that $\lim_{n\to\infty} \int_E f_n d\mu = \int_E f d\mu$.
- 2. (a) (10 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a Lebesgue integrable function such that $\int_a^b f(x) d\lambda(x) = 0$ for every a < b. Show that f(x) = 0 for almost every x.
 - (b) (5 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a Lebesgue integrable function such that

$$\int_{\mathbb{R}} f(x)g(x)d\lambda(x) = 0$$

for every continuous function $g: \mathbb{R} \to \mathbb{R}$. Show that f(x) = 0 for almost every x.

- 3. (15 points) Show that $f(x) = \sin(x^2)$ is not Lebesgue integrable over $[0, \infty)$. However, show that the improper Riemann integral $\int_0^\infty \sin(x^2) dx$ exist.
- 4. (10 points) Let (X, \mathcal{M}, μ) be a measure space, T a metric space, and $f: X \times T \to \mathbb{R}$ a function. Assume that $f(\cdot, t)$ is a measurable function for each $t \in T$ and $f(x, \cdot)$ is a continuous function for each $x \in X$. Assume also that there exists an integrable function g such that for each $t \in T$ we have $|f(x, t)| \leq g(x)$ for almost all $x \in X$. Show that the function $F: T \to \mathbb{R}$, defined by

$$F(t) = \int_X f(x,t)d\mu(x),$$

is a continuous function.

5. (15 points) Prove the following integral version of Minkowski's inequality for $1 \le p < \infty$: if $f \ge 0$ is a measurable function on \mathbb{R}^2 , then

$$\left[\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) d\lambda(x)\right)^p d\lambda(y)\right]^{1/p} \le \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y)^p d\lambda(y)\right)^{\frac{1}{p}} d\lambda(x).$$

- 6. (15 points) Let (f_n)_{n≥1} be a sequence of absolutely continuous real-valued functions on [0, 1] such that
 (a) f(x) = ∑_{n=1}[∞] f_n(x) converges for every x ∈ [0, 1].
 - (b) $\int_0^1 \left(\sum_{n=1}^\infty |f'_n(x)|\right) d\lambda(x) < \infty$. Show that f is absolutely continuous on [0, 1].
- 7. (15 points) Let $f_n, f \in BV([0,1]), n \geq 1$. Assume that $\sum_{n=1}^{\infty} V_{f_n-f}(0;1) < \infty$. Show that $f'_n \to f' \lambda$ -a.e. on [0,1].