QUALIFYING EXAMINATION
 January 2013
 MATH 544-R. Bañuelos

Student ID:

(PLEASE PRINT CLEARLY)

Instructions: There are a total of 6 problems in this exam. A problem appears on each of the following pages. Problems are worth $\mathbf{2 0}$ points each. Use the space provided for the solutions, using back pages as needed.

Problem 1. (20-pts, 5 pts each part) (a) (i) Define almost uniform convergence on the measure space (X, \mathcal{F}, μ).
(ii) Let f_{n} be a sequence of nonnegative measurable function converging almost uniformly to the nonnegative function f. Prove that $\sqrt{f_{n}}$ converges almost uniformly to \sqrt{f}.
(b) (i) Suppose f_{n} has the property that $\int_{X}\left|f_{n}\right| d \mu \rightarrow 0$. (i) Does it follow that $f_{n} \rightarrow 0$, a.e.? Justify your answer.
(ii) Does it follow that $f_{n} \rightarrow 0$, almost uniformly? Justify your answer.

Problem 2. (20-pts) Let (X, \mathcal{F}, μ) be a measure space and let $1 \leq p \leq \infty$ and q be its conjugate exponent. Suppose $f_{n} \rightarrow f$ in L^{p} and $g_{n} \rightarrow g$ in L^{q}. Prove that $f_{n} g_{n} \rightarrow f g$ in L^{1}.

Problem 3. ($\mathbf{2 0}-\mathbf{p t s})$ Let $\left\{a_{k}\right\}$ be a sequence of positive numbers converging to infinity. Prove that the following limit exists

$$
\lim _{k \rightarrow \infty} \int_{0}^{\infty} \frac{e^{-x} \cos x}{a_{k} x^{2}+\frac{1}{a_{k}}} d x
$$

and find it. Make sure to justify all steps.

Problem 4. (20-pts) Let (X, \mathcal{F}, μ) be σ-finite and f be measurable such that for all $\lambda>0$,

$$
\mu\{x:|f(x)|>\lambda\} \leq \frac{20}{\lambda^{p}}
$$

where $1<p<\infty$. Let q be the conjugate exponent of p. Prove that that there is a constant C depending only on p such that such

$$
\int_{E}|f(x)| d \mu \leq C m(E)^{1 / q}
$$

for all measurable sets E with $0<\mu(E)<\infty$. (The inequality holds trivially when $\mu(E)=0$ or $\mu(E)=\infty$.)
(Hint: Recall $\int_{E}|f(x)| d \mu=\int_{0}^{\infty} ? d \lambda$ and "break it" at the right place!)

Problem 5. (20-pts) Suppose $f:[0,1] \rightarrow \mathbb{R}$ is of bounded variation with $V(f ; 0,1)=\alpha$. For any $\beta>0$, set

$$
A=\left\{x \in(0,1): \limsup _{h \rightarrow 0} \frac{|f(x+h)-f(x)|}{|h|}>\beta\right\} .
$$

Prove that for any $0<p<1, m(A) \leq \frac{\alpha^{p}}{\beta^{p}}$, where m denotes the Lebesgue measure.

Problem 6. (20-pts, 10 pts each part) Let $f \in L^{1}(0,1)$ and for $x \in(0,1)$, define

$$
h(x)=\int_{x}^{1} \frac{1}{t} f(t) d t
$$

(i) Prove that h is continuous on $(0,1)$.
(ii) Show that

$$
\int_{0}^{1} h(t) d t=\int_{0}^{1} f(t) d t
$$

