QUALIFYING EXAMINATION

August 2013
MATH 544-R. Bañuelos
Instructions: There are a total of 6 problems. A problem appears on each of the following pages. Problems are worth 20 points each. Use the space provided for the solutions, using back pages as needed.

Problem 1.

(i) (5-pts) Prove that any function f of bounded variation on $[0,1]$ is Riemann integrable. (You may appeal to the characterization of Riemann integral functions in terms of Legesgue measure!)
(ii) (10-pts) Let m denote the Lebesgue measure on \mathbb{R}. Let $A \subset \mathbb{R}$ be Lebesgue measurable. A point $x \in \mathbb{R}$ is called a density point of A if

$$
\lim _{\varepsilon \rightarrow 0} \frac{m(A \cap[x, x+\varepsilon])}{|\varepsilon|}=1
$$

where m stands for the Lebesgue measure. Prove that almost all points of the set A are density points.
(iii) (5-pts) Find a sequence $\left\{f_{n}\right\}$ of Borel measurable functions on \mathbb{R} which decreases uniformly to 0 but such that for all n,

$$
\int_{\mathbb{R}} f_{n} d x=\infty
$$

(Here, as usual $d x=d m$.)

Problem 2. (20-pts) Let (X, \mathcal{F}, μ) be a finite measure space and let $1<p<\infty$. Suppose f_{n} is a sequence of measurable functions in $L^{p}(\mu)$ with $\left\|f_{n}\right\|_{p} \leq 1$ for all n and $f_{n} \rightarrow f$ a.e. Prove that

$$
\int_{X} f_{n} g d \mu \rightarrow \int_{X} f g d \mu
$$

for all $g \in L^{q}(\mu)$ where q is the conjugate exponent of p.

Problem 3. (20-pts) Let (X, \mathcal{F}, μ) be a measure space and let $g_{n}: X \rightarrow \mathbb{R}$ be a sequence of measurable functions satisfying:
(i) $\quad \int_{X}\left|g_{k}\right|^{2} d \mu \leq 100, \quad$ for all k
and

$$
\text { (ii) } \quad \int_{X} g_{j} g_{k} d \mu=0, \quad \text { for all } j \neq k .
$$

Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\beta}} \sum_{k=1}^{n^{2}} g_{k}=0, \quad \text { a.e. }
$$

for all $\beta>3 / 2$.

Problem 4. ($\mathbf{2 0}-\mathbf{p t s}$) Let f be Lebesgue measurable on $[0,1]$ with $f>0$ a.e. Suppose $\left\{E_{k}\right\}$ is a sequence of measurable sets in $[0,1]$ with the property that $\int_{E_{k}} f(x) d x \rightarrow 0$, as $k \rightarrow \infty$. Prove that $m\left(E_{k}\right) \rightarrow 0$, as $k \rightarrow \infty$.

Problem 5. (10 pts each) Compute the following limits, fully justifying all your steps.
1.

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{n \sin \left(\frac{x}{n}\right)}{x\left(1+x^{2}\right)} d x
$$

2.

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \sin \left(\frac{x}{n}\right)\left(1+\frac{x}{n}\right)^{-n} d x
$$

Problem 6. (20-pts) Let $f \in L^{2}[0,1]$ be such that

$$
\int_{0}^{1} f(x) g(x) d x=0
$$

for all continuous functions g with the property that

$$
\int_{0}^{1} g(x) d x=\int_{0}^{1} x g(x) d x=0 .
$$

Prove that there is a linear function $l(x)=a+b x$ such that $f(x)=l(x)$, for almost all $x \in[0,1]$.

