MA 54400 - Qualifying Exam

January 3, 2012

Prof. Donatella Danielli

Problem	Score	Max. pts.
1		20
2		25
3		30
4		25
Total		100

In order to receive full credit, you need to show your work and justify your arguments.

1. Let f(x,y), $0 \le x, y \le 1$, satisfy the following conditions: for each x, f(x,y) is an integrable function of y, and $\frac{\partial f}{\partial x}(x,y)$ is a bounded function of (x,y). Prove that $\frac{\partial f}{\partial x}(x,y)$ is a measurable function of y for each x and

$$\frac{d}{dx}\int_0^1 f(x,y) \, dy = \int_0^1 \frac{\partial f}{\partial x}(x,y) \, dy.$$

2. Let f be of bounded variation on [a, b], $-\infty < a < b < \infty$. If f = g + h, with g absolutely continuous and h singular, show that

$$\int_{a}^{b} \phi \ df = \int_{a}^{b} \phi f' \ dx \ + \ \int_{a}^{b} \phi \ dh$$

for all functions ϕ continuous on [a, b].

Hint: A function h is said to be singular if h' = 0 a.e.

3. Let $E \subset \mathbb{R}$ be a measurable set, and let K be a measurable function on $E \times E$. Assume there exists a positive constant C such that

(1)
$$\int_E K(x,y) \, dx \le C, \qquad \text{a.e. } y \in E,$$

and

(2)
$$\int_E K(x,y) \, dy \le C, \qquad \text{a.e. } x \in E.$$

Let $1 , <math>f \in L^p(E)$, and define

$$Tf(x) = \int_E K(x, y)f(y) \, dy.$$

(a) Prove that $Tf \in L^p(E)$ and

(3)

$$||Tf||_p \le C||f||_p.$$

(b) Is (3) still valid if p = 1 or $p = \infty$? If so, are assumptions (1) and/or (2) needed?

4

4. Let f be a nonnegative measurable function on [0, 1] satisfying

(*)
$$|\{x \in [0,1] \mid f(x) > \alpha\}| < \frac{1}{1+\alpha^2}, \quad \alpha > 0.$$

- (a) Determine the values of $p \in [1, \infty)$ for which $f \in L^p([0, 1])$.
- (b) If p_0 is the minimum value of p for which f may fail to be in L^p , give an example of a function f which satisfies (\star) , but which is not in L^{p_0} .