MA 54400- Qualifying Exam

January 3, 2012
Prof. Donatella Danielli

Problem	Score	Max. pts.
$\mathbf{1}$		20
$\mathbf{2}$		25
$\mathbf{3}$		30
$\mathbf{4}$		25
Total		100

In order to receive full credit, you need to show your work and justify your arguments.

1. Let $f(x, y), 0 \leq x, y \leq 1$, satisfy the following conditions: for each $x, f(x, y)$ is an integrable function of y, and $\frac{\partial f}{\partial x}(x, y)$ is a bounded function of (x, y). Prove that $\frac{\partial f}{\partial x}(x, y)$ is a measurable function of y for each x and

$$
\frac{d}{d x} \int_{0}^{1} f(x, y) d y=\int_{0}^{1} \frac{\partial f}{\partial x}(x, y) d y .
$$

2. Let f be of bounded variation on $[a, b],-\infty<a<b<\infty$. If $f=g+h$, with g absolutely continuous and h singular, show that

$$
\int_{a}^{b} \phi d f=\int_{a}^{b} \phi f^{\prime} d x+\int_{a}^{b} \phi d h
$$

for all functions ϕ continuous on $[a, b]$.
Hint: A function h is said to be singular if $h^{\prime}=0$ a.e.
3. Let $E \subset \mathbb{R}$ be a measurable set, and let K be a measurable function on $E \times E$. Assume there exists a positive constant C such that
and

$$
\begin{equation*}
\int_{E} K(x, y) d x \leq C, \quad \text { a.e. } y \in E \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{E} K(x, y) d y \leq C, \quad \text { a.e. } x \in E \tag{2}
\end{equation*}
$$

Let $1<p<\infty, f \in L^{p}(E)$, and define

$$
T f(x)=\int_{E} K(x, y) f(y) d y
$$

(a) Prove that $T f \in L^{p}(E)$ and

$$
\|T f\|_{p} \leq C\|f\|_{p}
$$

(b) Is (3) still valid if $p=1$ or $p=\infty$? If so, are assumptions (1) and/or (2) needed?
4. Let f be a nonnegative measurable function on $[0,1]$ satisfying
(*)

$$
|\{x \in[0,1] \mid f(x)>\alpha\}|<\frac{1}{1+\alpha^{2}}, \quad \alpha>0
$$

(a) Determine the values of $p \in[1, \infty)$ for which $f \in L^{p}([0,1])$.
(b) If p_{0} is the minimum value of p for which f may fail to be in L^{p}, give an example of a function f which satisfies (\star), but which is not in $L^{p_{0}}$.

