Name:

1. (30 points) Let (X, \mathcal{M}, μ) be a measure space. Let f and g be real-valued integrable functions on X with

$$
\int_{X} f d \mu=\int_{X} g d \mu
$$

Show that either
(a) $f=g$ a.e. on X, or
(b) there exists a set $E \in \mathcal{M}$ such that $\int_{E} f d \mu>\int_{E} g d \mu$.
2. (25 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Lebesgue integrable. Show that, for every $\varepsilon>0$, there exists a polynomial p and $a, b \in \mathbb{R}$ such that $\int_{\mathbb{R}}\left|f-p \chi_{[a, b]}\right| d \lambda<\varepsilon$.
3. (a) (20 points) Let (X, d) be a compact metric space and $f: X \rightarrow X$ an isometry; that is, $d(f(x), f(y))=d(x, y)$ holds for all $x, y \in X$. Then show that f is onto.
(b) (10 points) Does the conclusion remain true if X is not assumed to be compact?
4. (a) (15 points) Let (X, \mathcal{M}, μ) be a measure space and let f be an integrable function. Show that for each $\varepsilon>0$ there exists some $\delta>0$ (depending on ε) such that $\left|\int_{E} f d \mu\right|<\varepsilon$ holds for all measurable sets with $\mu(E)<\delta$.
(b) (15 points) Let $\left\{A_{n}\right\}$ be a sequence of measurable sets satisfying $0<\mu\left(A_{n}\right)<\infty$ for each n and $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$. Fix $1<p<\infty$ and let $g_{n}=\left(\mu\left(A_{n}\right)\right)^{-\frac{1}{q}} \chi_{A_{n}}, n=1,2, \ldots$, where $\frac{1}{p}+\frac{1}{q}=1$. Prove that $\lim _{n \rightarrow \infty} \int_{X} f g_{n} d \mu=0$ for each $f \in L^{p}(X, \mathcal{M}, \mu)$.
5. (25 points) Consider the measure space (X, \mathcal{M}, μ). Let g be an integrable function and let $\left\{f_{n}\right\}$ be a sequence of integrable functions such that $\left|f_{n}\right| \leq g$ a.e. holds for all n. Show that if f_{n} converges to f in measure then f is an integrable function and $\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| d \mu=0$
6. (30 points) Consider the function $f(x)=\frac{\sin ^{2} x}{x^{2}}$ on $[0, \infty)$.
(a) Show that f is Lebesgue integrable.
(b) Compute the Lebesgue integral $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d \lambda=\frac{\pi}{2}$.
(Hint: You can use $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$, in the sense of an improper Riemann integral. Recall that the Lebesgue integral $\int_{0}^{\infty} \frac{\sin x}{x} d \lambda$ does not exist.)
7. (30 points) Show that the function $f:[0,1] \rightarrow \mathbb{R}$ is Lipschitz with constant M (i.e. $|f(x)-f(y)| \leq M|x-y| \forall x, y)$ if and only if there is a sequence of continuously differentiable functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ such that
(i) $\left|f_{n}^{\prime}(x)\right| \leq M, \forall x \in[0,1]$
(ii) $f_{n} \rightarrow f$ pointwise on $[0,1]$
(Hint: In one direction, you could start by using Lusin's Theorem to construct a sequence of continuous functions $g_{n}:[0,1] \rightarrow \mathbb{R}$ such that $g_{n} \rightarrow f^{\prime}$ a.e. and $\left|g_{n}(x)\right| \leq M, x \in[0,1], n=$ $1,2,3, \ldots)$.

