Instructor: Marius Dadarlat

Qualifying exam— Real Analysis

Date: January 2011 Duration: 120 min

PUID:

Problem	Points	Score
1	10	
2	15	
3	15	
4	20	
5	20	
6	20	
7	20	
Total:	120	

1. Prove or disprove that $\frac{\sin x}{x}$ is Lebesgue integrable on $[0, \infty)$.

[10pt]

2. Compute the Lebesgue integral

[15pt]

$$\int_0^1 \overline{\lim_{n \to \infty}} x \cos(2\pi nx) dx.$$

Justify the result.

3. Let $f:\mathbb{R}\to\mathbb{R}$ be a Lebesgue integrable function. Prove that the function

$$F(x) = \int_{x}^{\infty} f(t)dt$$

is uniformly continuous, starting from the definition of the Lebesgue integral.

4. Show that $F: \mathbb{R} \to \mathbb{R}$

[20pt]

$$F(t) = \int_{-\infty}^{\infty} \frac{\sin(x^2 t)}{1 + x^4} dx,$$

is uniformly continuous and diferentiable on $\mathbb{R}.$

5. Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers such that $\sum_{n=1}^{\infty} |a_n| < \infty$. Define $f: [-1,1] \to \mathbb{R}$ by $f(x) = \sum_{n=1}^{\infty} a_n x^n$. Show that f has bounded variation.

[20pt]

Hint: Treat first the case when $a_n \geq 0$.

6. Let $f:[0,1]\to\mathbb{R}$ be absolutely continuous and assume that $f'\in L^2[0,1]$. Show that

 $\lim_{x \to 0+} \frac{f(x) - f(0)}{\sqrt{x}} = 0.$

[20pt]

7. Prove or disprove that $f(x) = \sin^{\alpha} x$ is absolutely absolutely continuous on [0, 1], for any $\alpha \in (0, 1)$.