MA 54400 - Qualifying Exam

August 8, 2011

Prof. Donatella Danielli

Problem	Score	Max. pts.
1		25
2		20
3		30
4		25
Total		100

1. Let $f \in L^1(\mathbb{R})$, and let $F(t) = \int_{\mathbb{R}} f(x) \cos(tx) dx$. (a) Prove that F(t) is continuous for $t \in \mathbb{R}$.

- (b) Prove the following *Riemann-Lebesgue Lemma*:

$$\lim_{t \to \infty} F(t) = 0.$$

(Hint: Start by proving the statement for $f = \chi_{[a,b]}$.)

2. (a) Suppose that $f_k, f \in L^2(E)$, with E a measurable set, and that

(1)
$$\int_E f_k g \to \int_E fg \quad \text{as } k \to \infty$$

for all $g \in L^2(E)$. If, in addition, $||f_k||_2 \to ||f||_2$, show that f_k converges to f in L^2 , i.e. ſ

$$\int_E |f_k - f|^2 \to 0 \quad \text{as } k \to \infty.$$

(b) Provide an example of a sequence $f_k \in L^2$ and a function $f \in L^2$ satisfying (1), but such that f_k does NOT converge to f in L^2 .

- 3. A bounded function f is said to be of bounded variation on \mathbb{R} if it is of bounded variation on any finite sub-interval [a, b], and moreover $A \stackrel{def}{=} \sup_{a,b} V[a, b; f] < \infty$. Here, V[a, b; f]denotes the total variation of f over the interval [a, b]. Show that:
 - (a) $\int_{\mathbb{R}} |f(x+h) f(x)| dx \le A|h|$ for all $h \in \mathbb{R}$.

Hint: For h > 0 write

$$\int_{\mathbb{R}} |f(x+h) - f(x)| \, dx = \sum_{n=-\infty}^{\infty} \int_{nh}^{(n+1)h} |f(x+h) - f(x)| \, dx.$$

(b) $\left|\int_{\mathbb{R}} f(x)\varphi'(x) dx\right| \leq A$, where φ is any function of class C^1 , of bounded variation, compactly supported, with $\sup_{x\in\mathbb{R}} |\varphi(x)| \leq 1$.

4. (a) Prove the following Generalized Hölder Inequality: Assume $1 \leq p_j \leq \infty$, $j = 1, \ldots, n$, with $\sum_{j=1}^{n} 1/p_j = 1/r \leq 1$. If E is a measurable set and $f_j \in L^{p_j}(E)$ for $j = 1, \ldots, n$, then $\prod_{j=1}^{n} f_j \in L^r(E)$ and

$$\left\|\prod_{j=1}^n f_j\right\|_r \le \prod_{j=1}^n \|f_j\|_{p_j}.$$

(b) Use part (a) to show that if $1 \le p, q, r \le \infty$, with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1$, $f \in L^p(\mathbb{R})$, and $g \in L^q(\mathbb{R})$, then

$$|(f * g)(x)|^r \le ||f||_p^{r-p} ||g||_q^{r-q} \int |f(y)|^p |g(x-y)|^q dy.$$

(Recall that $(f * g)(x) = \int f(y)g(x - y) \, dy$.)

(c) Prove Young Convolution Theorem: Assume that p, q, r, f, g are as in part (b). Then $f * g \in L^r(\mathbb{R})$ and

$$||f * g||_r \le ||f||_p ||g||_q.$$