Math 544

Qualifying Examination
January 2008
Prof. N. Garofalo

Name

\qquad
I. D. no.

Problem	Score	Max. pts.
$\mathbf{1}$		20
$\mathbf{2}$		20
$\mathbf{3}$		25
$\mathbf{4}$		20
$\mathbf{5}$		20
$\mathbf{6}$		25
Total		130

Problem 1. (20 points) Let $f \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$ be a function such that for some $s>n / 2$ its Fourier transform $\hat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-2 \pi i<\xi, x>} f(x) d x$ is such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi<\infty \tag{1}
\end{equation*}
$$

1) Prove that $\hat{f} \in L^{1}\left(\mathbb{R}^{n}\right)$.
2) You can assume as known that if $f, \hat{f} \in L^{1}\left(\mathbb{R}^{n}\right)$, then the following inversion formula holds

$$
\begin{equation*}
f(x)=\int_{\mathbb{R}^{n}} e^{2 \pi i<x, \xi>} \hat{f}(\xi) d \xi, \quad \text { for a.e. } x \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

Use (2) and Part 1) to prove that if $f \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$ is a function such that (1) holds for some $s>n / 2$, then f coincides a.e. with a continuous function on \mathbb{R}^{n}.

Problem 2. (20 points) Prove that if $f(x)=\chi_{R}(x)$, where $R=(a, b) \times(c, d) \subset \mathbb{R}^{2}$, and χ_{R} denotes the characteristic function of R, then the Fourier transform of f verifies $\hat{f}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$.

Hint: Start by computing the Fourier transform $\hat{\chi}_{(-A, A)}$ of a symmetric interval on the line, then...

Problem 3. (25 points) Consider the function $K(x)=(4 \pi)^{-n / 2} \exp \left(-|x|^{2} / 4\right), x \in \mathbb{R}^{n}$, and let

$$
K_{t}(x)=t^{-n / 2} K(x / \sqrt{t}), \quad t>0
$$

Given a measurable function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, define

$$
P_{t} f(x)=K_{t} \star f(x)=\int_{\mathbb{R}^{n}} K_{t}(x-y) f(y) d y
$$

1) Prove that for every $1 \leq p<\infty$, one has

$$
\lim _{t \rightarrow 0^{+}}\left\|P_{t} f-f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=0, \text { for every } f \in L^{p}\left(\mathbb{R}^{n}\right)
$$

and that moreover for every $1 \leq p \leq \infty$

$$
\left\|P_{t} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

2) Prove that if $1 \leq p<\infty$ one also has $P_{t}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{\infty}\left(\mathbb{R}^{n}\right)$ with

$$
\left\|P_{t} f\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq\left(p^{\prime}\right)^{-n / 2 p^{\prime}}(4 \pi t)^{-n / 2 p}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

where $1 / p+1 / p^{\prime}=1$. Here, one must take $\left(p^{\prime}\right)^{-n / 2 p^{\prime}}=1$ when $p=1$.

Problem 4. (20 points) Let

$$
N(x, y, z)=\left(\left(x^{2}+y^{2}\right)^{2}+z^{2}\right)^{1 / 4}, \quad(x, y, z) \in \mathbb{R}^{3}
$$

Using the change of variable

$$
x=\rho \cos \theta \sin ^{1 / 2} \phi, \quad y=\rho \sin \theta \sin ^{1 / 2} \phi, \quad z=\rho^{2} \cos \phi
$$

with $(\rho, \theta, \phi) \in \Omega=(0, \infty) \times(0,2 \pi) \times(0, \pi)$, identify all values of $p \in \mathbb{R}$ for which $N^{-p} \in L^{1}(E)$, where $E=\left\{(x, y, z) \in \mathbb{R}^{3} \mid N(x, y, z)<R\right\}$, with $R>0$ fixed.

Problem 5. (20 points) Use Lebesgue dominated convergence theorem to compute the limit

$$
\lim _{k \rightarrow \infty} \int_{B(0,1)} \frac{1-e^{-\frac{|x|^{2}}{k}}}{|x|^{n+1}} d x
$$

where $B(0,1)=\left\{x \in \mathbb{R}^{n}| | x \mid<1\right\}$.

Problem 6. (25 points) Let $\mathbb{S}^{n-1}=\left\{\omega \in \mathbb{R}^{n}| | \omega \mid=1\right\}$ be the unit sphere in \mathbb{R}^{n} and for every $\lambda>0$ consider the function

$$
f(x) \stackrel{\text { def }}{=} \int_{\mathbb{S}^{n-1}} e^{-i \sqrt{\lambda}\langle x, \omega>} d \sigma(\omega), \quad x \in \mathbb{R}^{n}
$$

where $d \sigma(\omega)$ indicates the induced Lebesgue measure on \mathbb{S}^{n-1}.

1) Prove that $f \in C^{2}\left(\mathbb{R}^{n}\right)$ and satisfies the equation

$$
\Delta f=-\lambda f
$$

where $\Delta f=\sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{j}^{2}}$.
2) Prove that if $n=3$, then

$$
f(x)=4 \pi \frac{\sin (\sqrt{\lambda}|x|)}{\sqrt{\lambda}|x|}
$$

Hint: Use spherical coordinates in \mathbb{R}^{3} and then express the integral on the unit sphere $\mathbb{S}^{2}=$ $\left\{\omega \in \mathbb{R}^{3}| | \omega \mid=1\right\}$ as an iterated integral over the one-parameter family of circles $L_{\theta}=\{\omega \in$ $\left.\mathbb{S}^{2} \mid<\omega, \frac{x}{|x|}>=\cos \theta\right\}$ forming an angle θ with the fixed direction $\frac{x}{|x|} \in \mathbb{S}^{2}$.

