Math 544
 Qualifying Examination August, 2008 - Prof. Davis

(15) 1. Show that if $E \subset \mathbb{R}$ and if $\left|\left.\right|_{e}\right.$ stands for outer measure then

$$
|E|_{e}=\sum_{n=-\infty}^{\infty}|E \cap[n, n+1]|_{e}
$$

Also prove that if $O_{i}, i \geq 1$, are open subsets of \mathbb{R} satisfying $\bigcup_{i=1}^{\infty} O_{i}=\mathbb{R}$ then

$$
\lim _{k \rightarrow \infty}\left|\left(\bigcup_{i=1}^{k} O_{i}\right) \cap E\right|_{e}=|E|_{e}
$$

(15)
2. Let f_{1}, f_{2}, \ldots be functions on \mathbb{R}^{n} such that $\int_{\mathbb{R}^{n}} f_{k}=1, k \geq 1$, and $0 \leq f_{k} \leq \frac{1}{k}$.

Prove $\int_{\mathbb{R}^{n}} \sup _{k \geq 1} f_{k}=\infty$.
(Here integrals are with respect to n dimensional Lebesgue measure.)
(15) 3. Let $c(x)$ be the Cantor function on $[0,1]$.
(So $c(x)$ is a continuous nondecreasing function which equals $\frac{1}{2}$ on $\left(\frac{1}{3}, \frac{2}{3}\right)$, equals $\frac{1}{4}$ on $\left(\frac{1}{9}, \frac{2}{9}\right)$, equals $\frac{3}{4}$ on $\left(\frac{7}{9}, \frac{8}{9}\right)$, etc.)
Clearly $c^{\prime}(x)=0$ for $x \in(0,1), x \notin C$, where C, the Cantor set, is the complement of the union of $\left(\frac{1}{3}, \frac{2}{3}\right),\left(\frac{1}{9}, \frac{2}{9}\right),\left(\frac{7}{9}, \frac{8}{9}\right)$, and all the rest of the middle thirds. Are there any $x \in(0,1) \cap C$ such that $c^{\prime}(x)$ exists (and is finite)? Prove your answer.
(15) 4. Let (S, Q, m) be a measure space satisfying $m(S)<\infty$. Let f be a measurable function on S satisfying $|f|<1$. Prove that either $\lim _{n \rightarrow \infty} \int_{S}\left(1+f+\cdots+f^{n}\right) d m$ exists or that this limit is $+\infty$.
5.
(5) i) Prove that if f is a continuous function on $[0,1]$ such that $f^{\prime}(x)=0$ for all but perhaps a finite number of x then f is a constant function, i.e. $f(x)=f(y)$, $x, y \in[0,1]$.
(15) ii) Prove that if g is a continuous function on [0, 1] satisfying $g(s) \leq g(t)$ if $s \leq t$ such that $g^{\prime}(x)=0$ for all but perhaps a countable number of x then g is a constant function.
(20) 6. Let f be a function on $(-\infty, \infty)$ such that given $\varepsilon>0$ there is a polynomial $p(x)$ such that $|p(x)-f(x)|<\varepsilon, x \in \mathbb{R}$. Prove f is a polynomial.

