Math 544
Qualifying Examination
August 2007
Prof. N. Garofalo

Name

\qquad
I. D. no.

Problem	Score	Max. pts.
$\mathbf{1}$		20
$\mathbf{2}$		20
$\mathbf{3}$		20
$\mathbf{4}$		20
$\mathbf{5}$		20
$\mathbf{6}$		25
$\mathbf{7}$		25
Total		150

Problem 1. (20 points) (i) Let $f \in L^{1}(0, \infty)$. Prove that there exists a sequence $x_{k} \nearrow \infty$ such that

$$
\lim _{k \rightarrow \infty} x_{k}\left|f\left(x_{k}\right)\right|=0
$$

(ii) Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ with $n \geq 2$. Prove that there exists a sequence $R_{k} \nearrow \infty$ such that

$$
\lim _{k \rightarrow \infty} R_{k} \int_{S\left(0, R_{k}\right)}|f| d \sigma=0
$$

where $S(0, r)=\left\{x \in \mathbb{R}^{n}| | x \mid=r\right\}$, and $d \sigma$ represents the $(n-1)$-dimensional Lebesgue measure induced on the sphere $S(0, r)$.

Problem 2. (20 points) Prove that if $E \subset \mathbb{R}^{n}$ is measurable, then for a.e. $x \in \mathbb{R}^{n}$

$$
\lim _{r \rightarrow 0} \frac{|E \cap B(x, r)|}{|B(x, r)|}=1, \quad \lim _{r \rightarrow 0} \frac{\left|\left(\mathbb{R}^{n} \backslash E\right) \cap B(x, r)\right|}{|B(x, r)|}=0
$$

Note: Here for a measurable set $A \subset \mathbb{R}^{n}$ we have indicated by $|A|$ its n-dimensional Lebesgue measure. Also, $B(x, r)=\left\{y \in \mathbb{R}^{n}| | y-x \mid<r\right\}$.

Problem 3. (20 points) (i) Prove that a continuous function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ maps sets F_{σ} into sets F_{σ}.
(ii) Prove that a Lipschitz map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, i.e., a map satisfying $|T(x)-T(y)| \leq L|x-y|$ for every $x, y \in \mathbb{R}^{n}$, and for some $L>0$, maps measurable sets into measurable sets. You can take for granted here that a Lipschitz map preserves sets of measure zero.

Problem 4. (20 points) Let $f \in L^{p}\left(\mathbb{R}^{n}\right), g \in L^{p^{\prime}}\left(\mathbb{R}^{n}\right)$, with $1 \leq p \leq \infty$ and $1 / p+1 / p^{\prime}=1$, prove that $f \star g \in C\left(\mathbb{R}^{n}\right)$, where $f \star g(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y$.

Problem 5. (20 points) Let $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, and $0<\alpha<n$, prove that for every $\epsilon>0$

$$
\left|\int_{B(x, \epsilon)} \frac{f(y)}{|x-y|^{n-\alpha}} d y\right| \leq C(n, \alpha) \epsilon^{\alpha} M f(x)
$$

where $M f(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y$ indicates the Hardy-Littlewood maximal function of f, and $|B(x, r)|$ denotes the n-dimensional Lebesgue measure of the ball $B(x, r)=\left\{y \in \mathbb{R}^{n} \mid\right.$ $|y-x|<r\}$.
Hint: Split the region of integration into the union of dyadic rings $\epsilon / 2^{k+1} \leq|y-x|<\epsilon / 2^{k}$.

Problem 6. (25 points) For every $\xi \in \mathbb{R}^{n}$ prove the existence of the limit

$$
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} \frac{e^{-2 \pi i<\xi, x>} e^{-|x|^{2}}}{\left(\frac{1}{k^{n}}+k|x|^{2}\right)^{\frac{n+1}{2}}} d x
$$

and compute it explicitly in terms of the $(n-1)$-dimensional measure σ_{n-1} of the unit sphere in \mathbb{R}^{n}, and of the Beta function

$$
B(x, y) \stackrel{\text { def }}{=} 2 \int_{0}^{\frac{\pi}{2}}(\cos \theta)^{2 x-1}(\sin \theta)^{2 y-1} d \theta, \quad x, y>0
$$

Remark: Note carefully that you are not required to know or write explicitly the value of σ_{n-1}.

Problem 7. (25 points) Let $f \in L^{1}\left(\mathbb{R}^{3}\right)$ and assume that $f(x)=f^{\star}(|x|)$. Prove that for every $\xi \in \mathbb{R}^{3}$

$$
\hat{f}(\xi) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{3}} e^{-2 \pi i<\xi, x>} f(x) d x=\frac{2}{|\xi|} \int_{0}^{\infty} f^{\star}(r) r \sin (2 \pi r|\xi|) d r .
$$

Hint: Use spherical coordinates in \mathbb{R}^{3} and then express the integral on the unit sphere $\mathbb{S}^{2}=$ $\left\{\omega \in \mathbb{R}^{3}| | \omega \mid=1\right\}$ as an iterated integral over the one-parameter family of circles $L_{\theta}=\{\omega \in$ $\left.\mathbb{S}^{2} \mid<\omega, \frac{\xi}{|\xi|}>=\cos \theta\right\}$ forming an angle θ with the fixed direction $\frac{\xi}{|\xi|} \in \mathbb{S}^{2}$.

