QUALIFYING EXAMINATION
 AUGUST 2005
 MATH 544-R. Bañuelos

Student ID:

(PLEASE PRINT CLEARLY)

Instructions: There are a total of 7 problems in this exam. A problem appears on each of the following eight (8) pages. Problems 1-6 are each worth 20 points and Problem 7 is worth 10 points for a total possible of 150 points. Partial credit, when applicable, will be given only in increments of 5 pints. Use the space provided for the solutions, using back pages as needed.

Problem 1.

(i) (5-pts) Define, carefully, what it means for a function $f:[0,1] \rightarrow \mathbb{R}$ to be of bounded variation.
(ii) (5-pts) Define, carefully, what it means for a function $f:[0,1] \rightarrow \mathbb{R}$ to be absolutely continuous.
(iii) (5-pts) Suppose f is of bounded variation on $[0,1]$. Prove that so is e^{f}.
(iv) (5-pts) Suppose f is absolutely continuous on $[0,1]$. Prove that so is e^{f}.

Problem 2. (20-pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Lebesgue measurable and in $L^{1}(\mathbb{R})$. Suppose that

$$
\int_{a}^{b} f(x) d m(x) \geq 0, \text { for all } a, b \in \mathbb{R}, a \leq b
$$

Prove that $f \geq 0$ a.e.

Problem 3. ($\mathbf{2 0}-\mathbf{p t s}$) Prove that the following limit exists

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{e^{-x} \cos x}{n x^{2}+\frac{1}{n}} d x
$$

and find it, justifying all your steps.

Problem 4. (20-pts) Let (X, \mathcal{F}, μ) be a measure space and let $f_{n}: X \rightarrow \mathbb{R}$ be a sequence of measurable functions on it satisfying:
(i)

$$
\int_{X}\left|f_{k}\right|^{2} d \mu \leq M, \quad \text { for all } \mathrm{k}
$$

(ii)

$$
\int_{X} f_{j} f_{k} d \mu=0, \quad \text { for all } j \neq k
$$

where M is a finite constant independent of n. For each $n=1,2, \ldots$, set $S_{n}=\sum_{k=1}^{n} f_{k}$, Prove that

$$
\lim _{n \rightarrow \infty} \frac{S_{n^{2}}}{n^{\alpha}}=0, \quad \text { a.e. }
$$

for all $\alpha>3 / 2$. (Careful, careful! By $S_{n^{2}}$ we mean $\sum_{k=1}^{n^{2}} f_{k}=f_{1}+f_{2}+\cdots+f_{n^{2}}$.)

Problem 5. (20-pts) Let $f:[0,1] \rightarrow \mathbb{R}$ be Lebesgue measurable with $f>0$, a.e. Let $\left\{E_{n}\right\}$ be a sequence of measurable sets in $[0,1]$ with the property that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{E_{n}} f(x) d x=0 \tag{1}
\end{equation*}
$$

Prove that $\lim _{n \rightarrow \infty} m\left(E_{n}\right)=0$.

Problem 6. (20-pts) Let f be Lebesgue measurable on $[0,1]$ with the property that $\|f\|_{2}=1$ and $\|f\|_{1}=\frac{1}{2}$. Prove that

$$
\frac{1}{4}(1-\lambda)^{2} \leq m\left\{x \in[0,1]:|f(x)| \geq \frac{\lambda}{2}\right\}
$$

for all $0 \leq \lambda \leq 1$. Here, m denotes the Lebesgue measure on $[0,1]$. Hint: Split the integral of $|f|$ into two pieces.

Problem 7. (10-pts) Let (X, \mathcal{F}, μ) be a measure space with $\mu(X)=1$. Fix $1 \leq n \leq m$ and let E_{1}, \ldots, E_{m} be measurable sets with the property that almost every $x \in X$ belongs to at least n of these sets. Prove that at least one of these sets must have μ measure greater than or equal to n / m.

