QUALIFYING EXAMINATION

AUGUST 2004
MATH 544 - Prof. Dadarlat

There are six questions. Use the space provided for solutions.

1. Prove that

$$
m^{*}\left(E_{1}\right)+m^{*}\left(E_{2}\right) \leq 2 m^{*}\left(E_{1} \triangle E_{2}\right)+2 m^{*}\left(E_{1} \cap E_{2}\right)
$$

where m^{*} is the Lebesgue outer measure on \mathbb{R} and $E_{1}, E_{2} \subset \mathbb{R}$.
(10 pts)
2. Show that the following limit exists

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \int_{1 / n}^{1} \frac{\cos (x+1 / n)-\cos x}{x^{3 / 2}} d x \tag{25pts}
\end{equation*}
$$

3. Let $A \subset \mathbb{R}$ be a Lebesgue measurable set. Show that if $0 \leq b \leq m(A)$, then there is a Lebesgue measurable set $B \subset A$ with $m(B)=b$.
(15 pts)
4. A Lebesgue integrable function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property that

$$
\int_{E} f(x) d x=0
$$

for all Lebesgue measurable sets $E \subset \mathbb{R}$ with $m(E)=\pi$. Prove or disprove that $f=0$ a.e.
5. Find all the functions $f:[0,1] \rightarrow \mathbb{R}$ with bounded variation satisfying

$$
f(x)+\left(T_{0}^{x} f\right)^{1 / 2}=1, \quad \forall x \in[0,1]
$$

and

$$
\int_{0}^{1} f(x) d x=1 / 3
$$

(Hint: Prove first that f is monotonic.)
($T_{a}^{b} f$ stands for the total variation of f on the interval $[a, b]$.)
6. Show that the sets

$$
\begin{equation*}
S_{1}=\left\{f \in L^{2}[0,1]: \int_{0}^{1}\left(1-x^{2}\right) f(x) d x>0\right\} \tag{10pts}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{2}=\left\{f \in L^{3}[0,1]: \int_{0}^{1}\left(1-2 x^{3}\right) f(\sin x) d x>0\right\} \tag{10pts}
\end{equation*}
$$

are open in $L^{2}[0,1]$ and respectively $L^{3}[0,1]$.

