QUALIFYING EXAMINATION AUGUST 2004 MATH 544 - Prof. Dadarlat

There are six questions. Use the space provided for solutions.

1. Prove that

 $m^*(E_1) + m^*(E_2) \le 2 m^*(E_1 \triangle E_2) + 2 m^*(E_1 \cap E_2)$ where m^* is the Lebesgue outer measure on \mathbb{R} and $E_1, E_2 \subset \mathbb{R}$. (10 pts) . Show that the following limit exists

$$\lim_{n \to \infty} n \int_{1/n}^{1} \frac{\cos(x+1/n) - \cos x}{x^{3/2}} \, dx.$$
(25 pts)

3. Let $A \subset \mathbb{R}$ be a Lebesgue measurable set. Show that if $0 \leq b \leq m(A)$, then there is a Lebesgue measurable set $B \subset A$ with m(B) = b. (15 pts)

4

4. A Lebesgue integrable function $f:\mathbb{R}\to\mathbb{R}$ has the property that

$$\int_E f(x) \, dx = 0$$

for all Lebesgue measurable sets $E \subset \mathbb{R}$ with $m(E) = \pi$. Prove or disprove that f = 0 a.e.

$$(20 \text{ pts})$$

5. Find all the functions $f:[0,1] \to \mathbb{R}$ with bounded variation satisfying

$$f(x) + (T_0^x f)^{1/2} = 1, \quad \forall x \in [0, 1],$$

and

$$\int_0^1 f(x) \, dx = 1/3.$$

(Hint: Prove first that f is monotonic.) ($T_a^b f$ stands for the total variation of f on the interval [a, b].) (15 pts) **6**. Show that the sets

$$S_1 = \{ f \in L^2[0,1] : \int_0^1 (1-x^2) f(x) \, dx > 0 \}$$
(10*pts*)

and

$$S_2 = \{ f \in L^3[0,1] : \int_0^1 (1-2x^3) f(\sin x) \, dx > 0 \}$$
(10*pts*)

are open in $L^2[0,1]$ and respectively $L^3[0,1]$.