Qualifying Examination

January 2003
Math 544 - Prof. L. Brown
(30 pts) 1. You may use each part of this problem in the next part. Let (X, d) be a metric space.
a. For $\emptyset \neq F \subset X$, let $f(x)=d(x, F)=\inf \{d(x, y): y \in F\}$. Show that f is continuous.
b. Let K and F be non-empty subsets of X such that K is compact. Show that there is p in K such that $d(p, F)=\inf \{d(x, y): x \in K, y \in F\}$.
c. Assume $K \subset U \subset X$, where K is compact and U is open. Show that there is $r>0$ such that $x \in K$ and $d(x, y)<r$ imply $y \in U$.
(30 pts) 2. a. Let $\left\{q_{1}, q_{2}, \ldots\right\}$ be an enumeration of the set of rational numbers q with $0<q<1$. Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x)=\left\{\begin{array}{ll}2^{-n}, & x=q_{n} \\ 0, & \text { otherwise }\end{array}\right.$. Show that f has bounded variation.
b. Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ such that $f=0$ almost everywhere and f does not have bounded variation, and justify your answer.
(25 pts) 3. Assume that f_{n} is Lebesgue measurable for $n=1,2, \ldots, f_{n} \geq 0$, and $\sum_{n=1}^{\infty} \int f_{n}(x) d x<\infty$. Show that $f_{n}(x) \rightarrow 0$ for almost every x.
(30 pts) 4. In each case find $\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x$ and justify your answer.
a. $f_{n}(x)= \begin{cases}\frac{\cos \left(\frac{x+1}{n}\right)}{\sqrt{x}}, & 1 \leq x \leq n-1 \\ 0, & \text { otherwise }\end{cases}$
b. $f_{n}(x)=\left\{\begin{array}{ll}\frac{\sin \left(\frac{x+1}{n}\right)}{\sqrt{x}}, & n \leq x \leq 2 n \\ 0, & \text { otherwise }\end{array}\right.$.
c. $f_{n}(x)= \begin{cases}\frac{\sin \left(1+\frac{x}{n}\right)}{\sqrt{x}}, & 0<x<1 \\ 0, & \text { otherwise }\end{cases}$
(30 pts) 5. Assume $1<p<\infty, \frac{1}{p}+\frac{1}{q}=1, \quad \int|f(x)|^{p} d x<\infty$, and $\int|g(x)|^{q} d x<\infty$.
a. For x in \mathbb{R} let $K_{x}(y)=f(x-y) g(y)$. Show that K_{x} is Lebesgue integrable.
b. Let $h(x)=\int f(x-y) g(y) d y$. Show that h is bounded.
c. Show that h is continuous.
(25 pts) 6. Assume that f_{n} is absolutely continuous on $[0,1]$ for $n=1,2, \ldots$, there is a function g in $L^{1}([0,1])$ such that $\left\|f_{n}^{\prime}-g\right\|_{1} \rightarrow 0$, and that the sequence $\left(f_{n}\right)$ is Cauchy in $L^{1}([0,1])$. Show that there is an absolutely continuous function h on $[0,1]$ such that $\left(f_{n}\right)$ converges uniformly to h.

