QUALIFYING EXAMINATION AUGUST 2003 MATH 544 - Prof. Davis

- (15 pts) 1. Let f be an integer valued function on \mathbb{R} . Show that $\{x : f \text{ is not continuous at } x\}$ is a Borel set.
- (15 pts) 2. Let A and B be (not necessarily Lebesgue measurable) subsets of \mathbb{R} and let $||_e$ stand for Lebesgue outer measure. Prove that if $|A|_e = 1$ and $|B|_e = 1$ and $|A \cup B|_e = 2$ then $|A \cap B|_e = 0$.

(15 pts) 3. Show, with proof,
$$F'(1) < 0$$
, where $F(x) = \int_0^\infty \frac{e^{-xy}}{y^3 + 1} \, dy$.

- (15 pts) 4. Prove that if f is a uniformly continuous function on \mathbb{R} and if $h(x) = \int_{x-1}^{x+1} f(s) ds$ then h is uniformly continuous on \mathbb{R} .
- (20 pts) 5. Let g(x) be a continuous function on [0,1] satisfying g(0) = 0, $g(1) \le 1$, and $g(s) \le g(t)$ if $0 \le s < t \le 1$. Put $\phi_n(x) = g(x)^n$. Prove that if f is a continuous function on [0,1], $\lim_{n\to\infty} \int_0^1 f(x) d\phi_n(x)$ exists.
- (20 pts) 6. Let f be a bounded Lebesgue measurable function on \mathbb{R} . Put $g(x) = \sup\{a \in \mathbb{R} : |\{y : y \in (x, x + 1) \text{ and } f(y) > a\}| > 0\},$ where \parallel is Lebesgue measure (i.e. g(x) equals the essential supremum of f over (x, x + 1)). Prove $\liminf_{x \to 0} g(x) \ge g(0)$.