# QUALIFYING EXAMINATION AUGUST 2002 

MATH 544 - Prof. Neugebauer

Name: $\qquad$

Instructions. Standard notation is used throughout or will be explained in the statement of each problem. There will be 6 additional pages with a problem on each page. Use the space provided for your solution of the problem.

1. Let $f \in L^{1}([0,1])$, and let $F(x)=\int_{0}^{x} f(t) d m$. If $E$ is a measurable subset of $[0,1]$, show that
(i) $F(E)=\{y: \exists x \in E \quad$ with $y=F(x)\}$ is measurable.
(ii) $m\{F(E)\} \leq \int_{E}|f(t)| d m$.
2. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, \mathbb{R}_{+}=\{x \in \mathbb{R}: x \geq 0\}$. Assume that $f \in L^{1}\left(\mathbb{R}_{+}\right)$satisfies

$$
f(x) \leq c \int_{0}^{x} f(t) d m(t)
$$

with $c$ independent of $x$. Show that $f(x)=0$ for every $x \in \mathbb{R}_{+}$. (Hint: Write $f(x)$ as iterated integrals.)
3. Let $(X, \mathcal{M}, \mu)$ be a measure space. Two functions $f, g: X \rightarrow \mathbb{R}$ are said to be comonotone if

$$
[f(x)-f(y)][g(x)-g(y)] \geq 0 \quad \text { for every }(x, y) \in X \times X
$$

If $\mu(X)=1$ and $f, g \in L^{1}(\mu)$ are co-monotone, show that

$$
\int_{X} f d \mu \cdot \int_{X} g d \mu \leq \int_{X} f g d \mu
$$

4. Let $(X \mathcal{M}, \mu)$ be a measure space and let $1<p<\infty$. Assume that $f: X \rightarrow \mathbb{R}$ is $\mathcal{M}$-measurable and satisfies

$$
\mu\{x:|f(x)|>y\} \leq \frac{c_{0}}{y^{p}}, \quad c_{0} \text { independent of } y>0 .
$$

Let $1 \leq r<p$. Show that

$$
\int_{X}|f|^{r} d \mu \leq c \mu(X)^{1-r / p}
$$

where $c$ depends only on $c_{0}, r, p$.
(Hint: The left side $\left.=r \int_{0}^{\infty} \cdots d y=r \int_{0}^{R}+r \int_{R}^{\infty}.\right)$
5. Let $G_{1} \supset G_{2} \supset \cdots$ be a sequence of open sets in $I=[0,1]$ and let

$$
f(x)=\sum_{n=1}^{\infty} m\left([0, x] \cap G_{n}\right) .
$$

(i) Show that $f \in A C(I)$ if and only if $\sum_{n=1}^{\infty} m\left(G_{n}\right)<\infty$.
(ii) Show that $f \in \operatorname{Lip}(I)$, i.e., there exists $0<M<\infty$ such that $|f(x)-f(y)| \leq M|x-y|$ for all $x, y \in I$, if and only if there exists $N \in \mathbb{N}$ such that $G_{n}=\emptyset, n \geq N$.
6. Let $I=[a, b]$ and let $f: I \rightarrow \mathbb{R}$ satisfy for some $1<p<\infty$

$$
V_{p}(f ; I)=\sup _{\Delta} \sum_{j=1}^{n} \frac{\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|^{p}}{\left|x_{j}-x_{j-1}\right|^{p-1}}<\infty
$$

where the sup is extended over all partitions $\Delta=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$. (i) Show that $f \in A C(I)$.
(ii) Show that $f^{\prime} \in L^{p}(I)$.
(Hint: $f_{n}=\sum_{j=1}^{n} \frac{f\left(x_{j}\right)-f\left(x_{j-1}\right)}{\left|I_{j}\right|} \chi_{I_{j}}(x)$, where $x_{j}=a+j|I| / n, I_{j}=\left[x_{j-1}, x_{j}\right], j=$ $1,2, \cdots n)$.

