QUALIFYING EXAMINATION AUGUST 2002

MATH 544 - Prof. Neugebauer

Name:

Instructions. Standard notation is used throughout or will be explained in the statement of each problem. There will be 6 *additional* pages with a problem on each page. Use the space provided for your solution of the problem.

1. Let $f \in L^1([0,1])$, and let $F(x) = \int_0^x f(t) dm$. If E is a measurable subset of [0,1], show that (i) $F(E) = \{y : \exists x \in E \text{ with } y = F(x)\}$ is measurable.

(ii) $m\{F(E)\} \leq \int_E |f(t)| dm$.

2. Let $f : \mathbb{R}_+ \to \mathbb{R}_+, \mathbb{R}_+ = \{x \in \mathbb{R} : x \ge 0\}$. Assume that $f \in L^1(\mathbb{R}_+)$ satisfies

$$f(x) \le c \int_0^x f(t) dm(t)$$

with c independent of x. Show that f(x) = 0 for every $x \in \mathbb{R}_+$. (Hint: Write f(x) as iterated integrals.) 3. Let (X, \mathcal{M}, μ) be a measure space. Two functions $f, g : X \to \mathbb{R}$ are said to be *co-monotone* if

 $[f(x) - f(y)][g(x) - g(y)] \ge 0$ for every $(x, y) \in X \times X$.

If $\mu(X) = 1$ and $f, g \in L^1(\mu)$ are co-monotone, show that

$$\int_X f d\mu \cdot \int_X g d\mu \le \int_X f g d\mu.$$

4. Let $(X\mathcal{M},\mu)$ be a measure space and let $1 . Assume that <math>f : X \to \mathbb{R}$ is \mathcal{M} -measurable and satisfies

$$\mu\{x: |f(x)| > y\} \le rac{c_0}{y^p}, \quad c_0 ext{ independent of } y > 0.$$

Let $1 \leq r < p$. Show that

$$\int_X |f|^r d\mu \le c\mu(X)^{1-r/p},$$

where c depends only on c_0, r, p . (Hint: The left side $= r \int_0^\infty \cdots dy = r \int_0^R +r \int_R^\infty$.) 5. Let $G_1 \supset G_2 \supset \cdots$ be a sequence of open sets in I = [0, 1] and let

$$f(x) = \sum_{n=1}^{\infty} m([0, x] \cap G_n).$$

(i) Show that $f \in AC(I)$ if and only if $\sum_{n=1}^{\infty} m(G_n) < \infty$.

(ii) Show that $f \in Lip(I)$, i.e., there exists $0 < M < \infty$ such that $|f(x) - f(y)| \le M|x-y|$ for all $x, y \in I$, if and only if there exists $N \in \mathbb{N}$ such that $G_n = \emptyset$, $n \ge N$.

6. Let I = [a, b] and let $f : I \to \mathbb{R}$ satisfy for some 1

$$V_p(f;I) = \sup_{\Delta} \sum_{j=1}^n \frac{|f(x_j) - f(x_{j-1})|^p}{|x_j - x_{j-1}|^{p-1}} < \infty,$$

where the sup is extended over all partitions $\Delta = \{a = x_0 < x_1 < \cdots < x_n = b\}$. (i) Show that $f \in AC(I)$.

(ii) Show that $f' \in L^p(I)$. (Hint: $f_n = \sum_{j=1}^n \frac{f(x_j) - f(x_{j-1})}{|I_j|} \chi_{I_j}(x)$, where $x_j = a + j|I|/n, I_j = [x_{j-1}, x_j], j = 1, 2, \dots n$).