QUALIFYING EXAMINATION
 AUGUST 2000
 MATH 544-Professor R. Bañuelos

NAME:

(PLEASE PRINT CLEARLY)

Instructions: There are a total of 6 problems in this exam with problem 3 containing two parts. A problem appears on each of the following seven (7) pages. Use the space provided for the solutions of the problem.

IMPORTANT: If there is anything in the statements of the problems that is not clear, please ask the person proctoring the exam to clarify it for you.

Problem 1. (20 pts) Let (X, \mathcal{F}, μ) be a measure space and suppose $\left\{f_{n}\right\}$ is a sequence of measurable functions with the property that for all $n \geq 1$,

$$
\mu\left\{x \in X:\left|f_{n}(x)\right| \geq \lambda\right\} \leq C e^{-\lambda^{2} / n}
$$

for all $\lambda>0$. (Here C is a constant independent of n.) Let $n_{k}=2^{k}$. Prove that

$$
\limsup _{k \rightarrow \infty} \frac{\left|f_{n_{k}}\right|}{\sqrt{n_{k} \log \left(\log \left(n_{k}\right)\right)}} \leq 1, \text { a.e. }
$$

Problem 2. (20 pts) Let (X, \mathcal{F}, μ) be a finite measure space. Let f_{n} be a sequence of measurable functions with $f_{1} \in L^{1}(\mu)$ and with the property that

$$
\mu\left\{x \in X:\left|f_{n}(x)\right|>\lambda\right\} \leq \mu\left\{x \in X:\left|f_{1}(x)\right|>\lambda\right\}
$$

for all n and all $\lambda>0$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \int_{X}\left(\max _{1 \leq j \leq n}\left|f_{j}\right|\right) d \mu=0
$$

(Hint: You may assume the fact that $\|f\|_{1}=\int_{0}^{\infty} \mu\{|f(x)|>\lambda\} d \lambda$.)

Problem 3i. (10 pts) Let (X, \mathcal{F}, μ) be a finite measure space. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions. Prove that $f_{n} \rightarrow f$ in measure if and only if every subsequence $\left\{f_{n_{k}}\right\}$ contains a further subsequence $\left\{f_{n_{k_{j}}}\right\}$ that converges almost everywhere to f.

Problem 3ii. (10 pts) Let (X, \mathcal{F}, μ) be a finite measure space. Let $F: \mathbb{R} \rightarrow$ \mathbb{R} be continuous and $f_{n} \rightarrow f$ in measure. Prove that $F\left(f_{n}\right) \rightarrow F(f)$ in measure. (You may assume, of course, that $f_{n}, f, F\left(f_{n}\right)$ and $F(f)$ are all measurable.)

Problem 4. Let (X, \mathcal{F}, μ) be a finite measure space and suppose $f \in L^{1}(\mu)$ is nonnegative. Suppose $1<q<\infty$ and let $1<p<\infty$ be its conjugate exponent $(1 / p+1 / q=1)$. Suppose f has the property that

$$
\int_{E} f d \mu \leq(\mu(E))^{\frac{1}{q}}
$$

for all measurable sets E. Prove that $f \in L^{r}(\mu)$ for any $1 \leq r<p$. (Hint: Consider $\left\{x \in X: 2^{n} \leq f(x)<2^{n+1}\right\}$, if you like.)

Problem 5. (20 pts) Let f be a continuous function on $[-1,1]$. Find

$$
\lim _{n \rightarrow \infty} n \int_{-1 / n}^{1 / n} f(x)(1-n|x|) d x
$$

Problem 6. (20 pts) Let (X, \mathcal{F}, μ) be a measure space and suppose $f \in$ $L^{p}(\mu), 1 \leq p<\infty$. Suppose E_{n} is a sequence of measurable sets satisfying $\mu\left(E_{n}\right)=\frac{1}{n}$, for all n. Prove that

$$
\lim _{n \rightarrow \infty}\left(n^{\frac{p-1}{p}} \int_{E_{n}}|f| d \mu\right)=0
$$

