QUALIFYING EXAMINATION JANUARY 1999 MATH 544 - Profs. Hunt/Gabrielov

Each problem is worth 10 points.

- **1.** Suppose that $\{f_n\}_{n\geq 1}$ is pointwise bounded and equicontinuous on a compact set K.
 - (a) Show that $\{f_n\}_{n\geq 1}$ is uniformly bounded on K.
 - (b) Show that $f(x) = \inf\{f_n(x) : n \ge 1\}$ is uniformly continuous on K.

2. Suppose that f is continuous on the interval $0 < x \le 1$.

(a) Show that there exists a sequence of polynomials that converges pointwise to f on (0, 1].

(b) State a necessary and sufficient condition on f(x) for $x \in (0, 1]$ such that the convergence in (a) may be taken to be uniform on (0, 1]. Show that the condition is necessary and sufficient.

3. If f_n is measurable for each $n \ge 1$, show that $\limsup_{n \to \infty} f_n$ is measurable.

4. (a) Show that
$$0 \le a \le b \le 2\pi$$
 implies $\lim_{n \to \infty} \int_a^b \cos nt \, dt = 0$.
(b) Show that $\lim_{n \to \infty} \int_0^{2\pi} f(t) \cos nt \, dt = 0$ for every $f \in L^1[0, 2\pi]$.

5. If $f \in \mathrm{L}^\infty[0,1]$, show that $\lim_{p \to \infty} \left(\int_0^1 |f|^p dx \right)^{1/p} = \|f\|_\infty.$

6. If $f_n \to f$ a.e. on [0,1] and, given any $\epsilon > 0$, there exists a $\delta > 0$ such that $|E| < \delta$ implies $\int_E |f_n| \, dx < \epsilon$, show that $\lim_{n \to \infty} \int_0^1 |f - f_n| \, dx = 0$.

7. (a) Let $g_n(x) = \frac{e^{-x/n}}{n}, x \ge 0, n \ge 1.$ (i) Show that $g_n(x) \in L^1[0,\infty), n \ge 1.$

(ii) Show that the hypothesis of the Lebesgue Dominated Convergence Theorem is not satisfied for $\{g_n\}_{n\geq 1}$.

(b) Let $h_n(x) = n \sin\left(\frac{x}{n}\right)$, $0 \le x \le \pi$, $n \ge 1$. Show that the hypothesis of the Lebesgue Dominated Convergence Theorem is satisfied for $\{h_n\}_{n\ge 1}$.

8. Use the Vitali Covering Lemma to show that, if f is finite-valued and increasing on $[0, 1], u > 0, \epsilon > 0$, and m^* denotes Lebesgue outer measure, then

$$m^*\left(\left\{x \in [0,1) : \limsup_{h \to 0^+} \frac{f(x+h) - f(x)}{h} > u\right\}\right) \le \frac{f(1) - f(0)}{u} + \epsilon$$