QUALIFYING EXAMINATION JANUARY 1998 MATH 544

<u>Note</u>: f is right continuous at x if $\lim_{\substack{h \to 0 \\ h > 0}} f(x+h) = f(x)$.

(16 pts) 1. a) Let μ be the set function on $[0,\infty)$ given by $\mu(\Lambda) = \sum_{\substack{n \in \Lambda \\ n \in \mathbb{N}}} \frac{(-1)^n}{n^2}$, where $\mathbb{N} =$

 $\{0, 1, 2, ...\}$, and sums are taken in the natural order on N. Show that μ can be decomposed $\mu = \nu - \tau$, where ν and τ are both measures.

b. Let γ be the set function on $[0,\infty)$ given by $\gamma(\Lambda) = \sum_{\substack{n \in \Lambda \\ n \in \mathbb{N}}} \frac{(-1)^n}{n}$, with sums taken in the natural order on \mathbb{N} . Show that $\gamma \text{ cannot}$ be decomposed $\gamma = \nu - \tau$,

where ν and τ are both measures.

- (15 pts) 2. Let $f : \mathbb{R}^2 \to \mathbb{R}$; suppose $x \to f(x, y)$ is Borel measurable for each $y \in \mathbb{R}$; and suppose that $y \to f(x, y)$ is right continuous for all $x \in \mathbb{R}$. Show that f itself is Borel measurable. [That is, if $\Lambda \in \mathcal{B}(\mathbb{R})$, then $f^{-1}(\Lambda) \in \mathcal{B}(\mathbb{R}^2)$, where $\mathcal{B}(\mathbb{R})$ and $\mathcal{B}(\mathbb{R}^2)$ denote the Borel sets of \mathbb{R} and \mathbb{R}^2 respectively.]
- (16 pts) 3. Let X, Y, Z be topological spaces, and let z = f(x, y) be a mapping from $X \times Y$ into Z. f is <u>continuous</u> in x if $x \to f(x, y)$ is a continuous mapping from X into Z, for each fixed $y \in Y$. f is <u>continuous</u> in y is defined analogously. f is jointly <u>continuous</u> in (x, y) if it's continuous as a mapping from $X \times Y$ into Z.
 - a) Show that if f is jointly continuous, then it is continuous in each variable separately.
 - b) Show that the converse to (a) is, in general, false. [Hint: consider $f(x, y) = \frac{xy}{x^2 + y^2}$.]
- (10 pts) 4. Let μ be a finite measure on $(\mathbb{R}, \mathcal{B})$.
 - a) Show that if f_n are measurable and $\lim f_n = f$ uniformly, then

$$\lim_{n \to \infty} \int f_n(x) \mu(dx) = \int f(x) \mu(dx).$$

b) Is the result in part (a) true if μ is not assumed to be finite? Justify your answer.

(15 points) 6. Let μ be a measure on $(\mathbb{R}, \mathcal{B})$, with \mathcal{B} the Borel sets of \mathbb{R} . Let $\mu(\mathbb{R}) = 1$ and define an operator on measurable functions by

$$\pi(f) = \int_{\mathbb{R}} \min(|f(x)|, 1)\mu|dx).$$

- a) Show that $f_n \to f$ in μ -measure if and only if $\pi(f_n f) \to 0$. b) If $(f_n)_{n \ge 1}$ is a sequence of measurable functions such that $\sum_n \pi(f_n f_{n+1}) < \infty$ ∞ , show it converges in μ -measure.
- c) Show that the sequence (f_n) of part (b) converges almost everywhere $(d\mu)$.
- (12 points) 7. Consider the series $\sum_{n=1}^{\infty} (\sin(\pi n! e))^{\alpha}$ where $\alpha \in \mathbb{N}$. Determine if the series converges, and if it converges conditionally or absolutely, for each $\alpha \in \mathbb{N}$.