QUALIFYING EXAMINATION
 MA 544

Spring 1997

Name: \qquad

Instructions. Standard notation is used throughout. In particular, $\mathbb{R}=\{$ reals $\}, I_{0}=$ $[0,1]$, and $L^{p}(\mathbb{R}), L^{p}\left(I_{0}\right)$ are the common L^{p} spaces over \mathbb{R}, I_{0} with respext to Lebesgue measure $d x$. For a measurable subset A of \mathbb{R}, let $|A|$ denote the Lebesgue measure of A. All functions are assumed to be measurable.

There will be 6 additional pages with a problem on each page. Use the space provided for your solution of the problem.

1. Let f be a nonnegative function in $L^{1}\left(I_{0}\right)$ such that for each $n=1,2, \cdots$

$$
\int_{0}^{1} f(x)^{n} d x=\int_{0}^{1} f(x) d x
$$

Show that $f(x)=\chi_{E}(x)$ for some measurable set $E \subset I_{0}$.
2. Let $\alpha_{n} \in \mathbb{R}$ with $\sum\left|\alpha_{n}\right|<\infty$. If $\left\{r_{n}\right\}$ is an enumeration of the rationals in I_{0} show that

$$
\sum \frac{\alpha_{n}}{\sqrt{\left|x-r_{n}\right|}}
$$

converges absolutely for a.e. $x \in I_{0}$.
3. Let $f_{n}: I_{0} \rightarrow[0, \infty), n=1,2, \cdots$. Show that there are $\alpha_{n}>0$ such that $\sum \alpha_{n} f_{n}(x)$ converges absolutely for a.e. $x \in I_{0}$.
4. Let $f \in L^{2}(\mathbb{R})$, and let $f_{0}(x)=x f(x)$. Show that

$$
\|f\|_{1} \leq\left\{8\|f\|_{2}\left\|f_{0}\right\|_{2}\right\}^{1 / 2} .
$$

Hint: $\int_{\mathbb{R}}|f|=\int_{|x| \leq \alpha}|f|+\int_{|x|>\alpha} \frac{1}{|x|}\left|f_{0}(x)\right|$; apply Hölder's inequality and \cdots.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $E \subset\left\{x: f^{\prime}(x)\right.$ exists $\}$. If $|E|=0$, show that $|f(E)|=0$.
6. Let $\left\{r_{k}\right\}$ be a sequence of positive real numbers with $r_{k} \rightarrow 0$ and $\sum r_{k}=\infty$. Let $f: \mathbb{R} \rightarrow[0, \infty]$ and define inductively the sets A_{k} by

$$
A_{k}=\left\{x \in \mathbb{R}: f(x) \geq r_{k}+\sum_{j<k} r_{j} \chi_{A_{j}}(x)\right\}
$$

Show that for every $x \in \mathbb{R}$,

$$
f(x)=\sum_{k=1}^{\infty} r_{k} \chi_{A_{k}}(x)
$$

