QUALIFYING EXAMINATION
 MA 544

Spring 1996

Name: \qquad

Instructions. Standard notation is used throughout. In particular, $\mathbb{R}=\{$ reals $\}, I_{0}=$ $[0,1]$, and $C\left(I_{0}\right), B V\left(I_{0}\right), A C\left(I_{0}\right), L^{p}\left(I_{0}\right)$ are the common function spaces over I_{0}. For a measurable subset A of \mathbb{R}, let $|A|$ denote the Lebesgue measure of A. All functions are assumed to be measurable. If $1 \leq p \leq \infty$, then p^{\prime} is the conjugate index, i.e., $1 / p+1 / p^{\prime}=1$.

There will be 6 additional pages with a problem on each page. Use the space provided for your solution of the problem.

1. Let $f \in C\left(I_{0}\right)$. Show that there exists a sequence of polynomials $\left\{p_{n}\right\}$ with integer coefficients such that p_{n} converges point-wise on I_{0} to

$$
g(x)= \begin{cases}f(x), & 0<x<1 \\ 0, & x=0,1\end{cases}
$$

(Hint: You may use without proof the fact that if $f \in C\left(I_{0}\right)$, then such a sequence of polynomials $\left\{p_{n}\right\}$ exists which converges on I_{0} uniformly to f iff $f(0)$ and $f(1)$ are integers.)
2. Assume that $f \in A C\left(I_{0}\right)$. Show that $V(x)=V(f ;[0, x])$ is also in $A C\left(I_{0}\right)$.
3. Let (X, \mathcal{M}, μ) be a measure space, and let $1 \leq p \leq \infty$. Let $\left\{f_{n}\right\} \subset L^{p^{\prime}}(\mu)$ with $\left\|f_{n}\right\|_{p^{\prime}} \leq M<\infty$. Assume that $\left\{\int_{X} f_{n} \phi d \mu\right\}$ converges for every ϕ in a dense subset of $L^{p}(\mu)$. Show that $\left\{\int_{X} f_{n} \phi d \mu\right\}$ converges for every $\phi \in L^{p}(\mu)$.
4. Let $f \in L^{2}\left(I_{0}\right),\|f\|_{2}=1$ and $\int_{0}^{1} f d m \geq \alpha>0$. If $E_{\beta}=\left\{x \in I_{0}: f(x) \geq \beta\right\}$ and $0<\beta<\alpha$, then $\left|E_{\beta}\right| \geq(\alpha-\beta)^{2}$. (Hint: $\alpha \leq \int_{E_{\beta}}+\int_{I_{0} \backslash E_{\beta}}$. .)
5. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)<\infty$. Assume that $\left\|f_{n}\right\|_{p} \leq M<\infty, n=$ $1,2, \ldots$, for some $1<p<\infty$, and that $f_{n} \rightarrow f$ in measure, i.e., $\mu\left\{x:\left|f(x)-f_{n}(x)\right|>\right.$ $\delta\} \rightarrow 0$ as $n \rightarrow \infty$, for every $\delta>0$. Show that $f_{n} \rightarrow f$ in $L^{1}(\mu)$.
(Hint: $\phi_{n}=\left|f-f_{n}\right|, E_{\delta, n}=\left\{x: \phi_{n}(x)>\delta\right\}$. Write $\int_{X} ? d \mu=\int_{X \backslash E_{\delta, n}} ? d \mu+\int_{E_{\delta, n}} ? d \mu$.)
6. Given $(X, \mathcal{M}, \mu), 1 \leq p<\infty, 0<\eta<p$. If $f_{n} \rightarrow f\left(L^{p}\right)$ and $g_{n} \rightarrow g\left(L^{p}\right)$, show that

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}\right|^{p-\eta}\left|g_{n}\right|^{\eta} d \mu=\int_{X}|f|^{p-\eta}|g|^{\eta} d \mu
$$

