QUALIFYING EXAMINATION MA 544

Spring 1996

Name: _____

Instructions. Standard notation is used throughout. In particular, $\mathbb{R} = \{\text{reals}\}$, $I_0 = [0, 1]$, and $C(I_0), BV(I_0), AC(I_0), L^p(I_0)$ are the common function spaces over I_0 . For a measurable subset A of \mathbb{R} , let |A| denote the Lebesgue measure of A. All functions are assumed to be measurable. If $1 \le p \le \infty$, then p' is the conjugate index, i.e., 1/p+1/p'=1.

There will be 6 *additional* pages with a problem on each page. Use the space provided for your solution of the problem.

SPRING 1996

1. Let $f \in C(I_0)$. Show that there exists a sequence of polynomials $\{p_n\}$ with integer coefficients such that p_n converges point-wise on I_0 to

$$g(x) = \left\{egin{array}{cc} f(x), & 0 < x < 1 \ 0, & x = 0, 1. \end{array}
ight.$$

(Hint: You may use without proof the fact that if $f \in C(I_0)$, then such a sequence of polynomials $\{p_n\}$ exists which converges on I_0 uniformly to f iff f(0) and f(1) are integers.) 2. Assume that $f \in AC(I_0)$. Show that V(x) = V(f; [0, x]) is also in $AC(I_0)$.

3. Let (X, \mathcal{M}, μ) be a measure space, and let $1 \leq p \leq \infty$. Let $\{f_n\} \subset L^{p'}(\mu)$ with $||f_n||_{p'} \leq M < \infty$. Assume that $\{\int_X f_n \phi \, d\mu\}$ converges for every ϕ in a dense subset of $L^p(\mu)$. Show that $\{\int_X f_n \phi \, d\mu\}$ converges for every $\phi \in L^p(\mu)$.

4. Let $f \in L^2(I_0)$, $||f||_2 = 1$ and $\int_0^1 f \, dm \ge \alpha > 0$. If $E_\beta = \{x \in I_0 : f(x) \ge \beta\}$ and $0 < \beta < \alpha$, then $|E_\beta| \ge (\alpha - \beta)^2$. (Hint: $\alpha \le \int_{E_\beta} + \int_{I_0 \setminus E_\beta}$.)

SPRING 1996

5. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$. Assume that $||f_n||_p \leq M < \infty$, $n = 1, 2, \ldots$, for some $1 , and that <math>f_n \to f$ in measure, i.e., $\mu\{x : |f(x) - f_n(x)| > \delta\} \to 0$ as $n \to \infty$, for every $\delta > 0$. Show that $f_n \to f$ in $L^1(\mu)$.

(Hint: $\phi_n = |f - f_n|, E_{\delta,n} = \{x : \phi_n(x) > \delta\}$. Write $\int_X ? d\mu = \int_{X \setminus E_{\delta,n}} ? d\mu + \int_{E_{\delta,n}} ? d\mu$.)

6. Given
$$(X, \mathcal{M}, \mu), 1 \le p < \infty, 0 < \eta < p$$
. If $f_n \to f(L^p)$ and $g_n \to g(L^p)$, show that
$$\lim_{n \to \infty} \int_X |f_n|^{p-\eta} |g_n|^{\eta} d\mu = \int_X |f|^{p-\eta} |g|^{\eta} d\mu.$$