QUALIFYING EXAMINATION
 MA 544

Fall 1996

Name: \qquad

Instructions. Standard notation is used throughout. In particular, $\mathbb{R}=\{$ reals $\}, I_{0}=$ $[0,1]$, and $C\left(I_{0}\right), B V\left(I_{0}\right), A C\left(I_{0}\right), L^{p}\left(I_{0}\right)$ are the common function spaces over I_{0}. For a measurable subset A of \mathbb{R}, let $|A|$ denote the Lebesgue measure of A. All functions are assumed to be measurable.

There will be 6 additional pages with a problem on each page. Use the space provided for your solution of the problem.

1. Let $f \in L^{1}\left(I_{0}\right), f \geq 0$, and let for each positive integer n

$$
f_{n}(x)= \begin{cases}n, & f(x) \geq n \\ f(x), & f(x)<n\end{cases}
$$

Show that

$$
\int_{0}^{1} \log f_{n} d x \rightarrow \int_{0}^{1} \log f d x
$$

Note that the integrals could be $-\infty$.
2. Assume that $f_{n} \in L^{p}\left(I_{0}\right)$ for some $1<p<\infty$ with $\left\|f_{n}\right\|_{p} \leq M<\infty, n=1,2, \cdots$. If $F_{n}(t)=\int_{0}^{t} f_{n}(x) d x$, show that there exists a subsequence $n_{1}<n_{2}<\cdots$ such that $\left\{F_{n_{j}}\right\}$ converges uniformly on I_{0} to an absolutely continuous function F.
3. Assume that with each $x \in \mathbb{R}$ there are associated sequences $\left\{x_{n}^{\prime}\right\},\left\{x_{n}^{\prime \prime}\right\}$ and $0<c_{x}<\infty$ such that (i) $x_{n}^{\prime}>x_{n}^{\prime \prime}>x$, (ii) $x_{n}^{\prime} \rightarrow x$, (iii) $\left(x_{n}^{\prime}-x_{n}^{\prime \prime}\right) /\left(x_{n}^{\prime}-x\right) \geq c_{x}$. If $f \in L^{1}(\mathbb{R})$, show that

$$
\frac{1}{x_{n}^{\prime}-x_{n}^{\prime \prime}} \int_{x_{n}^{\prime \prime}}^{x_{n}^{\prime}} f(t) d t \rightarrow f(x), \text { a.e. } x .
$$

Give an example showing that (iii) can not be omitted.(Hint: Let $f=\chi_{C}$, where $C=$?)
4. In this problem you may use without proof the fact that if $f \in L^{1}(\mathbb{R})$ and $f_{t}(x)=$ $f(x-t)$, then $f_{t} \rightarrow f\left(L^{1}\right)$ as $t \rightarrow 0$. Let A be a measurable subset of \mathbb{R} with $0<|A|<\infty$. Show that there exists $\epsilon_{0}>0$ such that for each $0<\epsilon<\epsilon_{0}$ there are points $x, y \in A$ with $|x-y|=\epsilon$.
(Hint: $|A \cap(A+\epsilon)|=\int_{A} \chi_{A}(?) d x \rightarrow ?$ as $\epsilon \rightarrow 0$.)
5. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)<\infty$. Assume that $f_{n} \rightarrow f, \mu-a . e$. and that $\sup _{n} \int_{X}\left|f_{n}\right|^{p_{0}} d \mu<\infty$ for some $1<p_{0}<\infty$. Show that $f_{n} \rightarrow f\left(L^{1}\right)$.
6. This problem is designed to test your intuition. Let $f \in L^{p}(\mathbb{R})$ for some $1<p<\infty$, and let for each positive integer n

$$
L_{n}=\| f(x+2 n)-f\left((x+n)\left\|_{p}, K_{n}=\right\| f(x+2 n)+f(x+n) \|_{p}\right.
$$

It is known that $L_{n} \rightarrow L, K_{n} \rightarrow K$ as $n \rightarrow \infty$. Which of the following two statements is true?
(i) $L \neq K$ is possible, (ii) $L=K$ always.

Give a one sentence explanation for your choice.

